
ALLEGRO & FREEBASIC
BY AVINASH “AETHERFOX” VORA

PAGE 1 OF 14

Allegro & freeBASIC
First Edition

By Avinash “aetherFox” Vora
avinashvora@gmail.com
http://fballeg.apeshell.net

YOU ARE USING THE CONTENTS OF THIS DOCUMENT AT YOUR OWN RISK. THERE IS NO GUARANTEE ON THE SOURCE
CODE PRESENTED HERE, IN TERMS OF ACCURACY, OR IN TERMS OF DAMAGE, IT MAY DO TO YOUR COMPUTER. IF
YOU UNDERSTAND EXACTLY WHAT IS GOING ON, THEN NOTHING BAD SHOULD HAPPEN.

YOU MAY FREELY DISTRIBUTE THIS ZIP ARCHIVE UNMODIFIED BY ANY MEANS, AS LONG AS THERE IS NO FINANCIAL
GAIN IN DOING SO. IF YOU ENJOYED READING THE ARTICLE, OR HAVE ANY COMMENTS/CRITIQUE, FEEL FREE TO
SEND ME AN EMAIL.

Thanks

This document could not have been written without the fantastic help
provided by na_th_an and DrV. Their help has been invaluable in my
progress with Allegro. I would like to thank them for sleepless nights of
programming help, bug fixes, proof reading and everything else.

Of course, I am also grateful to the creators of Allegro and freeBASIC.
Without them, this would be nothing. I also want to thank VonGodric, who’s
FBIDE was used extensively for outputting the formatted, highlighted syntax
that you see in this tutorial.

Who is this tutorial for?

This tutorial is for anyone fluent in freeBASIC. I am assuming no prior
knowledge or experience with any library, Allegro or not. This tutorial is also
for those freeBASIC programmers who are newcomers to game programming,
or experienced programmers who want to learn about proper programming
style.

While freeBASIC and Allegro both are cross-platform, for the sake of
simplicity, I am assuming that the platform used it Windows. However, the
actual source should work on any platform that both freeBASIC and Allegro
share compatibility with.

This tutorial is also for people who want a no-nonsense, professional guide to
using Allegro with freeBASIC. I have planned to create a reference manual
alongside this series of tutorials, one that could hopefully become a
standalone reference manual for Allegro with freeBASIC.

You will not learn about 3D gaming techniques, or the methods of accessing
complex mainstream technologies such as pixel shaders. You will find
techniques and information on the processes involved with writing 2D games
using Allegro and freeBASIC.

ALLEGRO & FREEBASIC
BY AVINASH “AETHERFOX” VORA

PAGE 2 OF 14

Requirements

You will need the following to compile and run the examples presented in this
document:

 freeBASIC
The examples were tested using freeBASIC v0.13b. This version of
freeBASIC includes the necessary headers.

 Allegro
You will only need the DLL (alleg40.dll) which will need to be placed
in either the same path as the compiled executable, or in your
system32 folder under the Windows installation directory to make the
DLL accessible to all executables that call Allegro routines.

 FBIDE [optional]
This is entirely optional, many people prefer to use their own plaintext
editors, but I find that FBIDE does a fairly decent job at being an IDE
for fbc.exe.

What is Allegro?

Allegro (http://alleg.sf.net) is a library providing low-level routines to
programmers that generally deal with games. The type of routines Allegro
offers includes ones for graphics, input, precision timing, etc. It is open
source software, which means that it is free, and, it is always growing.
Comprehensive features are frequently added, but still, the library is vast and
extensive, and you will find almost every single routine you need.

Why use Allegro with freeBASIC?

When freeBASIC first released, I heard little about anything but SDL and
OpenGL. While I am not disputing the power, flexibility and usefulness of
either of these fantastic libraries, I was immediately discouraged from trying
to learn them. I use BASIC because of the ease of use that it presents with
complex tasks, and OpenGL and SDL did not keep that fun factor for me with
their steep learning curves.

I always knew about Allegro from when I learnt basic C++, but never used it. I
recently came across the Allegro headers DrV ported over from the original
distribution, and decided to learn how to use the library. It is (in my opinion)
easier to use Allegro for graphics programming than it is to use the GFXLib
commands. It is intuitive and ingeniously simple. After 15 minutes with the
library, I was creating a double-buffering example.

I found next to nothing in terms of resources for Allegro within the BASIC
community, and so consulted the Allegro documentation, articles and tutorials
and ported the code into BASIC when required. It was simple to pick up
Allegro even with this obscure method, and my goal for this tutorial is to make
the process even easier for you.

ALLEGRO & FREEBASIC
BY AVINASH “AETHERFOX” VORA

PAGE 3 OF 14

Getting started

Almost every single programming tutorial that is worth its cheese starts off
with a “Hello World!” example, and who am I to stray from tradition:

#include "allegro.bi"

'Initialise Allegro
allegro_init

'Create message box
allegro_message "Hello World!"

allegro_exit

end 0
SOURCE LISTING 1

allegro_init needs to be called before you use any of Allegro’s routines or
functions; it initializes some important things in the library, and besides, it is
essential.

allegro_exit should be called at program termination. It is good
programming practice, as it de-initialises everything properly.

allegro_message is a routine that creates a message box with text passed to
it as a parameter. While it is not practical for main program flow, it is useful
for error reporting, as we will shortly see.

This example is limited, and the next one will introduce the initializing of
graphics modes, and outputting text to the screen.

Graphics modes

Setting a graphics mode in Allegro requires the use of the set_gfx_mode()
function. Its syntax is as follows:

set_gfx_mode (byval card as integer, byval w as integer, byval h as
integer, byval v_w as integer, byval v_h as integer)
SYNTAX LISTING 1

The parameters of the function do the following:

 card – would usually be one of GFX_AUTODETECT,
GFX_AUTODETECT_WINDOWED or GFX_AUTODETECT_FULLSCREEN.
GFX_AUTODETECT detects the default graphics mode for the computer,
which usually comes out to be full screen. The other two force a full
screen or windowed view. For a full list of the possible values for this
parameter, consult the manual at http://alleg.sf.net.

 w, h – the width and height of the screen (the resolution) in pixels.

ALLEGRO & FREEBASIC
BY AVINASH “AETHERFOX” VORA

PAGE 4 OF 14

 v_w, v_h – the width and height of the virtual screen. For the time
being, leave these at 0. Virtual screens are a tricky topic that will be
discussed at a later date.

Error checking

Generally, this function is used in conjunction with a check to make sure the
video card supports the selected screen mode. While in this tutorial we will
not be doing a fail-safe by reverting to another screen mode, it is simple by
using an if…then…else check and changing to a supported screen mode.

if set_gfx_mode (GFX_AUTODETECT_WINDOWED, 320, 240, 0, 0) < 0 then
 allegro_message Unable to set the graphics mode!" + chr(13) +
allegro_error + chr(13)
 end 1
end if
SOURCE LISTING 2

The above code will attempt to set the graphics mode to a screen of resolution
320 by 240 pixels, and if unsuccessful, it will gracefully exit with an error
message.

Checks like this are important not only in games, but in all types of
applications. A user seeing a cryptic error message that is not going to help
them at all will not see wonders in the user-friendliness of the program. In
this vein of thought, you should account for all possible errors and try to
create a fix for them that will allow a user to continue using the program.

Outputting information to the screen

To see an implementation of using graphics modes, consider source listing 3:

#include "allegro.bi"

'Declarations
dim white as integer

'Initialise Allegro
allegro_init

'Initialise Allegro's keyboard routines
install_keyboard

'Set 8-bit colour depth
set_color_depth 8

'Set graphics mode to 320x240 with error checking
if set_gfx_mode (GFX_AUTODETECT_WINDOWED, 320, 240, 0, 0) < 0 then
 'set_gfx_mode(GFX_TEXT, 0, 0, 0, 0)
 allegro_message Unable to set the graphics mode!" + chr(13) +
allegro_error + chr(13)
 end 1
end if

ALLEGRO & FREEBASIC
BY AVINASH “AETHERFOX” VORA

PAGE 5 OF 14

'Precalculate the colour white
white = makecol (255, 255, 255)

'Write "Hello World!" onto the screen.
textout screen, font, Hello World!", 10, 10, white

'Wait for a key press
readkey

remove_keyboard

allegro_exit

end 0
SOURCE LISTING 3

install_keyboard is a routine that initialises Allegro’s keyboard routines.
This must be called before using any of Allegro’s keyboard features. In this
particular example, it is called for the use of the readkey routine.

remove_keyboard is a de-initialisation routine that for the keyboard
handler. Similar to allegro_exit, it is not needed, but is good
programming practice.

makecol is a function that converts colours from a hardware independent
format (red, green, and blue values ranging 0-255) to the pixel format
required by the current video mode, calling the preceding 8, 15, 16, 24, or 32
bit makecol functions as appropriate. By pre-calculating it, you can gain
significant speed, rather than calculating it every time you need to use it.
While you may not be able to pre-calculate every possible colour, ones that
you know you will use frequently should be pre-calculated for speed.

Its syntax is as follows:

makecol (byval r as integer, byval g as integer, byval b as integer)
SYNTAX LISTING 2

set_color_depth is a routine that should be called before every
set_gfx_mode function is called. It sets the colour depth to the parameter
passed to it (8, 16, 24 or 32 bit).

textout is a routine that writes a defined string, of a predefined font, onto a
predefined BITMAP (the concept of BITMAPs will be explained later), at a
defined position on screen, in a defined colour. The syntax is as follows:

textout (byval bmp as BITMAP ptr, byval f as FONT Ptr, byval s as
string, byval x as integer, byval y as integer, byval c as integer)
SYNTAX LISTING 3

In source listing 3, the pointer to BITMAP is screen. screen is defined in
the Allegro headers (actually it is defined when set_gfx_mode is called), and

ALLEGRO & FREEBASIC
BY AVINASH “AETHERFOX” VORA

PAGE 6 OF 14

is the BITMAP for the visible screen. Similarly, the pointer to FONT is font,
the default font, also predefined in Allegro headers.

There are other ways to write text to the screen, for example by having
different alignments (e.g. textout_center) or changing the text options
(e.g. text_length). These functions are documented in the manual at
http://alleg.sf.net or http://www.allegro.cc.

readkey is a function that returns the next keyboard character pressed in
ASCII format. If the buffer is empty, it waits until a key is pressed. While
Allegro has better functions for detecting key presses, in this particular
situation, readkey is ideal in its simplicity. As it is a keyboard routine, it
requires the calling of install_keyboard.

Graphics primitives

While most games might not ever use graphics primitives, it is extremely
useful to learn them. They can be used for many things such as testing.
However, certain styles of games use graphics primitives exclusively for
creating the graphics – the wire frame “2D vector” style games.

Allegro follows a nice, simple intuitive system that is common throughout
most of the routines you will come across – the BPC principle.

Baked Potato & Cheese

In general, when passing parameters to many graphics routines, the order
might not come to you immediately. The BPC principle is your solution:

• B – BITMAP you want to draw graphics to.
• P – Position you want to draw the graphic – this is two parameters, x

and y coordinates.
• C – Colour you want to draw with.

The simple anagram Baked Potato & Cheese should help you remember what
order to pass your parameters in.

A pretty picture

A simple example of using the filled circle function is as follows:

#include "allegro.bi"

'Declarations
dim i as integer

'Initialise Allegro routines
allegro_init
install_keyboard

'Set 8-bit colour depth

ALLEGRO & FREEBASIC
BY AVINASH “AETHERFOX” VORA

PAGE 7 OF 14

set_color_depth 8

'Set graphics mode to 320x240 with error checking
if set_gfx_mode(GFX_AUTODETECT_WINDOWED, 320, 240, 0, 0) < 0 then
 allegro_message Unable to set any graphic mode" + chr(13) +
allegro_error + chr(13)
 end 1
end if

'Draw a pattern with circles
for i = 16 * 10 to 0 step -1
 circlefill screen, SCREEN_W / 2, SCREEN_H - 1, i, i / 10
next i

'Wait for a key press
readkey

end 0
SOURCE LISTING 4

The output is as follows:

The main program flow does not need explaining, but the syntax for the
circlefill routine is as follows:

circlefill (byval bmp as BITMAP ptr, byval x as integer, byval y as
integer, byval radius as integer, byval c as integer)
SYNTAX LISTING 3

SCREEN_W and SCREEN_H are extremely useful values that are defined when
set_gfx_mode is called. They return the width and height of the screen in
pixels. Using these as opposed to hard-coding pixel values is preferable,
because then your engine becomes generic to whatever resolution is specified
by set_gfx_mode.

A comprehensive list of graphics primitives is available in the Allegro manual
(http://www.allegro.cc/manual/view_category.php?_id=13).

ALLEGRO & FREEBASIC
BY AVINASH “AETHERFOX” VORA

PAGE 8 OF 14

Animating

Animating is the process of changing the appearance of graphics on the visual
buffer over a period. This could be a running character, a flickering torch or
even just the scrolling of the game screen. While for now we will be covering
simple animation, the basic principles are the same no matter what is being
done.

A bouncing ball

The first example of proper animation is just a simple bouncing ball
demonstration. As this is the first long source listing, I have added comments
to mark off areas of the source. This is good programming practice, and can
allow you to easily reference to sections of the

'General:
'--------

option explicit

#include "allegro.bi"

'Declarations:
'-------------

'Types

'Ball type
type BALL_TYPE
 x as single
 y as single
 speedx as single
 speedy as single
 radius as single
end type

'Create a ball object
dim ball as BALL_TYPE

'Check whether game is running
dim end_game as single

'Colours for precalculation
dim white as integer

'Initialisation:
'---------------

'Initialise Allegro routines
allegro_init
install_keyboard

'Set colour depth to 8-bit
set_color_depth 8

'Set graphics mode to 320x240 with error checking

ALLEGRO & FREEBASIC
BY AVINASH “AETHERFOX” VORA

PAGE 9 OF 14

if set_gfx_mode(GFX_AUTODETECT_WINDOWED, 320, 240, 0, 0) < 0 then
 allegro_message "Unable to set any graphic mode" + chr(13) +
allegro_error + chr(13)
 end 1
end if

'Initialise the variables

'Game is not ended yet
end_game = 0

'Initialise the ball
ball.x = SCREEN_W / 2
ball.y = SCREEN_H / 2
ball.speedx = 5
ball.speedy = 5
ball.radius = 2

'Precalculate colours for speed
white = makecol (255, 255, 255)

'Clear everything off the screen
clear_bitmap screen

'Clear the keyboard buffer
clear_keybuf

'Main Program Flow:
'------------------

'Main game loop while end_game is not set
do
 'Move the ball
 ball.x = ball.x + ball.speedx
 ball.y = ball.y + ball.speedy

 'Check for collisions against the sides
 if ball.x - ball.radius <= 0 or ball.x + ball.radius >= SCREEN_W
then ball.speedx = - ball.speedx
 'Check for collisions against the top
 if ball.y - ball.radius <= 0 or ball.y + ball.radius >= SCREEN_H
then ball.speedy = - ball.speedy

 'Draw the ball
 circlefill screen, ball.x, ball.y, ball.radius, white

 'Clear the previous loop's graphics
 clear_bitmap screen

 'Check for the key Escape, then end_game = 1
 if key(KEY_ESC) then end_game = 1
loop until end_game = 1

'De-initialise allegro
remove_keyboard
allegro_exit

end 0
SOURCE LISTING 5

ALLEGRO & FREEBASIC
BY AVINASH “AETHERFOX” VORA

PAGE 10 OF 14

The only thing new here are the keyboard functions, which will be covered
later, when discussing input.

One important point to note is the use of flags for checking game progress.
While it might seem useless to use the end_game flag in this situation, as the
main loop becomes more and more complex, checking the end of the loop is
much easier by setting the flag than by using complex exits. All variables are
also initialised from beforehand, grouped properly. This, along with
commenting is programming style and practice, and should be enforced.
While you may not follow my style, you should develop your own and keep to
it.

Running this produces something that was not intended. Depending on your
computer, you might see a large number of semi-transparent balls flickering
all over the screen. In reality, there is one ball bouncing on the edges of the
screen, but flicker occurs because video memory is slow, and during each loop,
the entire screen is constantly cleared, redrawn to and updated. This process
is slow and inefficient.

This is a simple demonstration of a bouncing ball, so you can only imagine
how much flicker a fully-fledged game might have. There are two techniques
to fixing this, and both are applied simultaneously to give the smoothest
graphics.

Wait for the vertical retrace

vsync is a function that simply waits for the vertical retrace. The vertical
retrace is the time when the monitor is preparing to draw the next frame on
the screen. If we erase all objects and draw them before the screen is updated,
we should get a smoother view.

This sounds complicated, but really all it entails is calling the vsync function.
It is a simple method of implementation to yield good results. Usually, it is
between your drawing commands and your screen erasing commands. In our
example, the lines before the loop end change to:

 'Draw the ball
 circlefill screen, ball.x, ball.y, ball.radius, white

 'Wait for the vertical retrace
 vsync

 'Clear the previous loop's graphics
 clear_bitmap screen

 'Check for the key Escape, then end_game = 1
 if key(KEY_ESC) then end_game = 1
loop until end_game = 1
SOURCE LISTING 6

ALLEGRO & FREEBASIC
BY AVINASH “AETHERFOX” VORA

PAGE 11 OF 14

This solution should present a much better view of what was intended by this
little demonstration program. The ball should now bounce around the screen
with no flicker at a reasonable speed.

As great a vsync is, it is usually not enough when the drawing to the screen
becomes more intensive. Even on this demonstration, slower computers
might notice slight flicker. The solution to almost all flicker problems comes
in the form of a technique that is extremely common in 2D games, and is the
standard method (and has been for the last 15 years at least) for eliminating
flicker on almost all machines: double buffering.

Double buffering

The technique of double buffering involves drawing all the graphics to a
temporary, off-screen BITMAP, until a whole frame has been updated, and
then copying the final image to the real screen memory in one big chunk.

This is effective because we aren’t erasing the screen, just replacing what is
already there with the contents of the buffer. Video memory if slow, and
overwriting areas of the screen a lot when drawing a frame is slow. System
memory, where a temporary buffer is stored, is much faster, and so doing all
the writes to system memory, and copying the entire buffer over in one go to
screen memory is more efficient.

This is also better in the long run, because reading from the screen memory is
usually even slower, and so by having all the graphics on the buffer, you can
read from there and have considerable speed advantages.

Implementing a double buffering system means a few changes and additions
to our source:

'ball_bounce.bas

'General:
'--------

option explicit

#include "allegro.bi"

'Declarations:
'-------------

'Types

'Ball type
type BALL_TYPE
 x as single
 y as single
 speedx as single
 speedy as single
 radius as single
end type

ALLEGRO & FREEBASIC
BY AVINASH “AETHERFOX” VORA

PAGE 12 OF 14

'Create a ball object
dim ball as BALL_TYPE

'Create an Allegro BITMAP for double buffering
dim dblbuffer as BITMAP ptr

'Check whether game is running
dim end_game as single

'Colours for precalculation
dim white as integer

'Initialisation:
'---------------

'Initialise Allegro routines
allegro_init
install_keyboard

'Set colour depth to 8-bit
set_color_depth 8

'Set graphics mode to 320x240 with error checking
if set_gfx_mode(GFX_AUTODETECT_WINDOWED, 320, 240, 0, 0) < 0 then
 allegro_message "Unable to set any graphic mode" + chr(13) +
allegro_error + chr(13)
 end 1
end if

'Set window title to "Bouncing ball"
set_window_title "Bouncing ball"

'Create the double buffer surface
dblbuffer = create_bitmap (SCREEN_W, SCREEN_H)

'Check to make sure there was enough memory to create the surface.
if dblbuffer = NULL then
 allegro_exit
 allegro_message "Sorry, not enough memory."
 end 1
end if

'Initialise the variables

'Game is not ended yet
end_game = 0

'Initialise the ball
ball.x = SCREEN_W / 2
ball.y = SCREEN_H / 2
ball.speedx = 5
ball.speedy = 5
ball.radius = 2

'Precalculate colours for speed
white = makecol (255, 255, 255)

'Clear everything off the screen and buffer
clear_bitmap screen

ALLEGRO & FREEBASIC
BY AVINASH “AETHERFOX” VORA

PAGE 13 OF 14

clear_bitmap dblbuffer

'Clear the keyboard buffer
clear_keybuf

'Main Program Flow:
'------------------

'Main game loop while end_game is not set
do
 'Move the ball
 ball.x = ball.x + ball.speedx
 ball.y = ball.y + ball.speedy

 'Check for collisions against the sides
 if ball.x - ball.radius <= 0 or ball.x + ball.radius >= SCREEN_W
then ball.speedx = - ball.speedx
 'Check for collisions against the top
 if ball.y - ball.radius <= 0 or ball.y + ball.radius >= SCREEN_H
then ball.speedy = - ball.speedy

 'Draw the ball to the buffer
 circlefill dblbuffer, ball.x, ball.y, ball.radius, white

 'Wait for the vertical retrace
 vsync

 'Blit the contents of the buffer to the visible screen
 blit dblbuffer, screen, 0, 0, 0, 0, SCREEN_W, SCREEN_H

 'Clear the previous loop's buffer contents
 clear_bitmap dblbuffer

 'Check for the key Escape, then end_game = 1
 if key(KEY_ESC) then end_game = 1
loop until end_game = 1

'Destroy the double buffer and remove it from memory.
destroy_bitmap dblbuffer

'De-initialise allegro
remove_keyboard
allegro_exit

end 0
SOURCE LISTING 7 – BALL_BOUNCE.BAS

This source listing is available in the /examples directory that came in the
original archive.

The first thing that needs to be done is to dimension the dblbuffer pointer to
the BITMAP structure. The pointer is an address to the memory location that
contains the actual information in the buffer. Therefore, just declaring the
pointer does not create the buffer. To create the buffer, you need to invoke the
create_bitmap function as follows:

'Create the double buffer surface
dblbuffer = create_bitmap (SCREEN_W, SCREEN_H)

ALLEGRO & FREEBASIC
BY AVINASH “AETHERFOX” VORA

PAGE 14 OF 14

SOURCE LISTING 8

Once the bitmap is created, it can be drawn to. Before this, it is good practice
to clear the bitmap (all BITMAPs should be cleared at the start of the
program). This is done using the clear_bitmap function.

Now that everything has to be drawn to dblbuffer, the circlefill
command needs to be changed to make it draw to dblbuffer instead of
screen.

After calling vsync, we need to put everything on dblbuffer onto screen.
This is done by a routine called blit. Blitting is the process of copying from
one buffer to another. The syntax of blit is:

blit (byval source as BITMAP ptr, byval dest as BITMAP ptr, byval
source_x as integer, byval source_y as integer, byval dest_x as
integer, byval dest_y as integer, byval width as integer, byval
height as integer)
SYNTAX LISTING 4

This is one of the most useful features of Allegro, and from the parameters,
you can see it is very versatile. For example, you can copy part of a buffer to a
specified location on the screen. While for now you can leave the last 4
parameters at 0, in the future you may use them.

Previously we cleared the screen, but as discussed this is slow, and instead, we
should clear the temporary buffer, dblbuffer.

Once the program is complete (end_game = 1), then the buffer is no longer
needed. The destroy_bitmap function removes the buffer from memory,
and while it is not required, it should be included for good programming
practice and proper de-initialisation.

Keyboard handling

All games follow three stages as they progress through their main program
loop: input, process and output. Input is a very important aspect to game
programming, because it can make or break a game. There is a lot to consider,
such as the control scheme, the influence the control has on variables etc.

Allegro has the capability to handle mouse and joystick input, however, for
now we are going to focus on keyboard handling.

