
— Version 1.1 —
For FreeBASIC v0.12 (beta version)/later

on MS-Windows 9x/ME/2000/NT/XP

P r e s e n t e d t o y o u b y A d i g u n A z i k i w e P o l a c k .P r e s e n t e d t o y o u b y A d i g u n A z i k i w e P o l a c k .

©©2005 Adigun Azikiwe Polack. All Rights Reserved.2005 Adigun Azikiwe Polack. All Rights Reserved.

Feel absolutely free to use this library for your projects in FreeBASIC. If you do use
ANY of these routines within this original library, then please give me credit for them,
otherwise DO NOT EVEN USE THEM AT ALL, *period*. Thank you so rather much for
your honest patronage and cooperation!! ;) !

— 2 —

TT A B L E O F C O N T E N T S A B L E O F C O N T E N T S
4 - Introduction

6 - How to Install

8 - Black Palette Routines

9 - Solid Color Palette Routines

11 - Palette Fading/Rotation Routines

11 - Supporting the 256-color GFXlib 2 default palette
49 - Supporting custom 768-byte palettes
90 - Supporting PixelPlus 256 (or PP256) palettes

131 - Palette Crossfading Routines

131 - Between a 256-color GFXlib 2 default palette and a 768-byte palette
139 - Between TWO different 768-byte palettes
145 - Between TWO different PixelPlus 256 (or PP256) palettes
151 - Between a 256-color GFXlib 2 default palette and a PP256 palette
159 - Between a 768-byte palette and a PP256 palette

167 - Color Adjust Routine

168 - Appendix A: 768-byte Palettes

170 - Appendix b: constants

171 - Appendix C: Program Example Index

172 - Changelog

173 - Final Words

— 3 —

—————— IINTRODUCTIONNTRODUCTION
Or, how this first-ever original palette library for FreeBASIC sprang into birth and being!!

HELLO, AND MY MOST BLESSED GREETINGS TO YOU ALL!!! :D I so happily
welcome you on purpose to the “The New FreeBASIC 8-Bit Palette Machine”, the
very newest and potentially the hottest incarnation of my “8-Bit Palette Machine” ever
since its original QuickBASIC 4.5/7.1 debut for Future.Library that was first presented
for the “QuickBASIC Caliber Programming Compo – Summer & Autumn 2003” from
during the Summer of 2003!!

What you are about to experience for yourself is the FIRST-EVER 8-Bit (or 256-color)
Palette Library for FreeBASIC ever in existence, spanning to an awesomely jaw-
dropping total of 129 PALETTE ROUTINES129 PALETTE ROUTINES ― including plenty of routines
supporting 768-byte palettes and even PixelPlus 256 (or PP256) .PAL-based palette
files as well ― and *that* is in this very first version of this alone!! I’m a tell you right
now, you QuickBASIC/QBasic fans just are gonna love and even enjoy the rather heck
out of this one, believe me!!! ^_-=b

First of all, BIGGEST Special Thanks go to Almighty Jehovah God for first inspiring
me to do this one just to be a rather special blessing to the whole entire QB45/QB71/FB
community and to YOU, the FreeBASIC (FB) programmer, too!!! d=^-^=b !!

Here now is the real story of how this very first palette lib for FB got started.

I was looking to implement some *real* good custom palette fading/manipulation
routines for the wildly AWESOME QB-like graphics library by Angelo Mottola entitled
GFXlib 2 for FreeBASIC. I tested several conversions of QB code sources based on
fading in/out palettes and stuff, but they ended up failing so miserably due to either
improper color fades and/or messed-up colors upon conversion to FB. Then, lo and

— 4 —

behold, somewhere on the internet, I discovered the QB source code by P. Bindels about
his palette fading routines (BIG thanks go to him for his awesome coding ideas to me
here!!), and I was _so_ inspired then with the idea to just go right ahead and code in my
custom palette routines here for GFXlib 2 for FreeBASIC!! So why not, hmmmm? ;*)

Also, BIG thanks go to Sterling Christensen for his awesome coding ideas on how to
actually code a greyscale palette in FB as part of my original routines here, too!!

Last (but CERTAINLY not even least), thanks also to Richard Eric M. Lope (aka
Relsoft) and to Chris Chadwick for the PP256 palette loading code presented in this
original FreeBASIC lib, and also to Steve Nunnally of Acid Works Software for the 768-
byte palette loading code that I have successfully implemented in this very lib, too!!!

With all of that said......................................

Do enjoy this wonderful and original
palette library for FreeBASIC!!! ^_-=b !!

WISHING YOU SUCH EXCELLENT SUCCESS AND MASTERPIECES,

Adigun Azikiwe Polack
Official Creator of “The New FreeBASIC 8-Bit Palette Machine”
March 9, 2005

— 5 —

—————— HHOWOW TOTO I INSTALLNSTALL
Or, here’s some simple instructions on how to get this biggest 8-bit palette block party on!!

Here is how to set up “The New FreeBASIC 8-Bit Palette Machine v1.1” on FreeBASIC:

1. Extract all of your files from “FBPMv1_1.zip” into the main
directory where FreeBASIC is located (ie C:\FreeBASIC\).

2. In the main directory where FreeBASIC is located, please run the
batch file called “FBPM_createlib.bat”. It will then create its own
library file “libFBnewpal.a” for you to work for your current
version of FreeBASIC (recommended FB version is 0.12b or
newer!).

3. Now, please place the file “libFBnewpal.a” in the “lib\win32”
directory within the main directory where FreeBASIC is located (ie
C:\FreeBASIC\lib\win32).

— 6 —

4. Next, place the file “FBnewpal.bi” in the “inc” directory within the
main directory where FreeBASIC is located (ie
C:\FreeBASIC\inc).

5. To include this lib in your FB programs, just add this
metacommand in at the beginning of your code:

 '$include: "Fbnewpal.bi"

Now you are ready to rock your 256-color world in
FreeBASIC!!! ;*) !

Wait a Sec!! Just one important note for you before getting started:
Recommendedly, this lib is best to be used in conjunction with Angelo Mottola’s
GFXlib 2 for FB ONLY! It will not work using the Allegro game library, unfortunately.
However, especially (and even mainly) using GFXlib 2, it WILL work on any 256-color
(or 8-bit) graphics mode of your choice, fullscreen or windowed!!! d=^_^=b !

And now, onward we go *straight* into the main meat here: the 8-bit palette routines for
this original FB library! HERE WE GO!!!

— 7 —

—————— BBLACKLACK P PALETTEALETTE R ROUTINESOUTINES
Or, routines to just throw the palette into total darkness!

 ZeroPalZeroPal

Sub Description:
 Sub ZeroPal ()

Notes on this Command:
When this command is called in your FreeBASIC programs, you can actually switch the entire
palette to black INSTANTANEOUSLY!

 ZeroPalRangeZeroPalRange

Sub Description:
 Sub ZeroPalRange (StartColor, EndColor)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Notes on this Command:
When this command is called in your FreeBASIC programs, you can actually switch the color-order
range within your screen to black INSTANTANEOUSLY! Remember, for this command to work the
best, the “EndColor” number must be higher than the “StartColor” one.

— 8 —

—————— SSOLOLIDID C COLOROLOR P PALETTEALETTE R ROUTINESOUTINES
Or, routines to add a little color into your life!

 SolidColorPalSolidColorPal

Sub Description:
 Sub SolidColorPal (R, G, B)

R = the red shade level (0 to 63).

G = the green shade level (0 to 63).

B = the blue shade level (0 to 63).

Notes on this Command:
When this command is called in your FreeBASIC programs, you can actually switch the entire
palette to the color of your choice easily and INSTANTANEOUSLY!!

— 9 —

 SolidColorPalRangeSolidColorPalRange

Sub Description:
 Sub SolidColorPalRange (StartColor, EndColor, R, G, B)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

R = the red shade level (0 to 63).

G = the green shade level (0 to 63).

B = the blue shade level (0 to 63).

Notes on this Command:
When this command is called in your FreeBASIC programs, you can actually switch the color-order
range within your screen to the color of your choice easily and INSTANTANEOUSLY! Remember,
for this command to work the best, the “EndColor” number must be higher than the “StartColor”
one.

— 10 —

—————— PPALETTEALETTE F FADINGADING/R/ROTATIONOTATION R ROUTINESOUTINES
Or, how to teach your old 256-color palette the newest mind-blowing tricks and then some!!!and then some!!!

NOTE: These next routines support the default 256-color GFXlib 2 palette only!!
When these following commands are applied in your FB programs, the colors can automatically
change to the shades of the default 256-color GFXlib 2 palette, so please be *very* careful if you
are using any custom 256-color palette(s) of your own choice! ;*) !

 FadeIn.DefaultPalFadeIn.DefaultPal

Sub Description:
 Sub FadeIn.DefaultPal (millisec)

millisec = the amount of milliseconds determining the speed of fading in from black to the default GFXlib 2 palette.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the entire
screen to fade from black all the way to the default 256-color GFXlib 2 palette, all in ONE single
pass! Remember, higher milliseconds determine slower fades, while lower milliseconds constitute
more and more faster fades.

— 11 —

 FadeOut.DefaultPalFadeOut.DefaultPal

Sub Description:
 Sub FadeOut.DefaultPal (millisec)

millisec = the amount of milliseconds determining the speed of fading from the default GFXlib 2 palette all the way to black.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the entire
screen to fade from the default 256-color GFXlib 2 palette all the way out to pitch blackness, all in
ONE single pass! Remember, higher milliseconds determine slower fades, while lower
milliseconds constitute more and more faster fades.

 FadeInX.DefaultPalFadeInX.DefaultPal

Sub Description:
 Sub FadeInX.DefaultPal (R.from, G.from, B.from, millisec)

R.from = the red shade level (0 to 63) to fade from.

G.from = the green shade level (0 to 63) to fade from.

B.from = the blue shade level (0 to 63) to fade from.

millisec = the amount of milliseconds determining the speed of fading in from the selected color to the default GFXlib 2 palette.

Notes on this Command:
On this command, you can actually determine just how fast or slow you want the entire screen to
fade from the color of your choice all the way to the default 256-color GFXlib 2 palette, all in
ONE single pass! Higher milliseconds = slower fades; while lower milliseconds = faster fades.

— 12 —

 FadeOutX.DefaultPalFadeOutX.DefaultPal

Sub Description:
 Sub FadeOutX.DefaultPal (R.to, G.to, B.to, millisec)

R.to = the red shade level (0 to 63) to fade to.

G.to = the green shade level (0 to 63) to fade to.

B.to = the blue shade level (0 to 63) to fade to.

millisec = the amount of milliseconds determining the speed of fading out the default GFXlib 2 palette to the selected color.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the entire
screen to fade the default 256-color GFXlib 2 palette right into the color of your choice, all in
ONE single pass! Higher milliseconds = slower fades; while lower milliseconds = faster fades.

— 13 —

 FadeInRange.DefaultPalFadeInRange.DefaultPal

Sub Description:
 Sub FadeInRange.DefaultPal (StartColor, EndColor, millisec)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading in from black to the default GFXlib 2 palette.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the color-
order range within your screen to fade from black all the way to the default 256-color GFXlib 2
palette, all in ONE single pass! Useful for fading certain parts of the screen in, too!! Remember,
for this command to work the best, the “EndColor” number must be higher than the “StartColor”
one. Also here, higher milliseconds will determine slower fades, while lower milliseconds
constitute more and more faster fades.

— 14 —

 FadeOutRange.DefaultPalFadeOutRange.DefaultPal

Sub Description:
 Sub FadeOutRange.DefaultPal (StartColor, EndColor, millisec)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading from the default GFXlib 2 palette all the way to black.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the color-
order range within your screen to fade from the default 256-color GFXlib 2 palette all the way out
to pitch blackness, all in ONE single pass! Useful for fading out certain parts of the screen, too!!
Remember, for this command to work the best, the “EndColor” number must be higher than the
“StartColor” one. Also here, higher milliseconds will determine slower fades, while lower
milliseconds constitute more and more faster fades.

— 15 —

 FadeInRangeX.DefaultPalFadeInRangeX.DefaultPal

Sub Description:
 Sub FadeInRangeX.DefaultPal (StartColor, EndColor, R.from, G.from, B.from,

millisec)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

R.from = the red shade level (0 to 63) to fade from.

G.from = the green shade level (0 to 63) to fade from.

B.from = the blue shade level (0 to 63) to fade from.

millisec = the amount of milliseconds determining the speed of fading in from the selected color to the default GFXlib 2 palette.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the color-
order range within your screen to fade from your chosen color all the way to the default 256-color
GFXlib 2 palette, all in ONE single pass! Useful for fading certain parts of the screen in, and for
doing some real cool palette-lighting effects, too!! Remember, for this command to work the best,
the “EndColor” number must be higher than the “StartColor” one. Also here, higher milliseconds
will determine slower fades, while lower milliseconds constitute more and more faster fades.

— 16 —

 FadeOutRangeX.DefaultPalFadeOutRangeX.DefaultPal

Sub Description:
 Sub FadeOutRangeX.DefaultPal (StartColor, EndColor, R.to, G.to, B.to,

millisec)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

R.to = the red shade level (0 to 63) to fade to.

G.to = the green shade level (0 to 63) to fade to.

B.to = the blue shade level (0 to 63) to fade to.

millisec = the amount of milliseconds determining the speed of fading out the default GFXlib 2 palette to the selected color.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the color-
order range within your screen to fade the default 256-color GFXlib 2 palette right into the color
of your choice, all in ONE single pass! Useful for fading certain parts of the screen in, and for
doing some real cool palette-lighting effects, too!! Remember, for this command to work the best,
the “EndColor” number must be higher than the “StartColor” one. Also here, higher milliseconds
will determine slower fades, while lower milliseconds constitute more and more faster fades.

Please turn to the very next page for an FB program example of this using the commands
FadeInRangeX.DefaultPal and FadeOutRangeX.DefaultPal!!

— 17 —

Program Example # 1:
(This example uses FadeInRangeX.DefaultPal and FadeOutRangeX.DefaultPal.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we draw up the 256 color entries from the default GFXlib 2 palette.
'---
For DrawPalette = 0 to 255
 Line (DrawPalette, 8)-(DrawPalette, 200), DrawPalette
Next

'Now, let's work some color fades, shall we? ^_^ !
'--

Color 15, 1
Locate 1, 1: ? "Let's work some palette magic!!!"

'--- We fade color entries 20-100 of the default GFXlib 2 palette right to
' yellow in a single pass, measuring 30 millisecs. per fade-step, and
' then we fade it back again using that same color and speed!

FadeOutRangeX.DefaultPal 20, 100, 63, 63, 0, 30
FadeInRangeX.DefaultPal 20, 100, 63, 63, 0, 30

'--- Let's try it the same way with purple, except this time, we use color
' entries 110-255 and with a faster fade speed of 15 millisecs. per
' fade-step!

FadeOutRangeX.DefaultPal 110, 255, 63, 0, 63, 15
FadeInRangeX.DefaultPal 110, 255, 63, 0, 63, 15

'--- How 'bout some chillin' this time with a dash of blue using color
' entries 0-158 and with a *much* slower fade speed of 70 milliseconds
' per fade-step, hmmm? ;)

FadeOutRangeX.DefaultPal 0, 158, 0, 0, 63, 70
FadeInRangeX.DefaultPal 0, 158, 0, 0, 63, 70

'--- Or get some red in and out with color entries 129-203 using a MUCH
' faster fade speed of only 4 milliseconds/fade-step!

FadeOutRangeX.DefaultPal 129, 203, 63, 0, 0, 4
FadeInRangeX.DefaultPal 129, 203, 63, 0, 0, 4

'--- Finally, let's wrap this up now by fading the ENTIRE default GFXlib 2
' palette slowly but *all the way* out in only one pass, using just 63
' milliseconds per fade-step! ;*)

FadeOut.DefaultPal 63

— 18 —

 FadeCtrl.DefaultPalFadeCtrl.DefaultPal

Sub Description:
 Sub FadeCtrl.DefaultPal (FadeIn.Grade)

FadeIn.Grade = the custom fade-in level between a pitch-black palette and the default GFXlib 2 palette.
(63 = fully faded in to palette; 0 = fully faded out to black)

Notes on this Command:
With this command, you have FULL and free control of all 64 of the fade levels between a black
screen and the default 256-color GFXlib 2 palette! Perfect for doing fade-ins/fade-outs while the
on-screen action of the run-time of your FB project is still going, be it a game or graphics demo or
whatever it is!! ;*) !

— 19 —

 FadeCtrlX.DefaultPalFadeCtrlX.DefaultPal

Sub Description:
 Sub FadeCtrlX.DefaultPal (R.from, G.from, B.from, FadeIn.Grade)

R.from = the red shade level (0 to 63) to use as your “fade-out”-based color shade.

G.from = the green shade level (0 to 63) to use as your “fade-out”-based color shade.

B.from = the blue shade level (0 to 63) to use as your “fade-out”-based color shade.

FadeIn.Grade = the custom fade-in level between an entire palette of a resulting color here and the default GFXlib 2 palette.
(63 = fully faded in to palette; 0 = fully faded out to that chosen color)

Notes on this Command:
With this command, you have FULL and free control of all 64 of the fade levels between a whole
palette of the color of your choice and the default 256-color GFXlib 2 palette! Perfect for doing
such “color-to-default-palette”-based fade-ins/fade-outs while the on-screen action of the run-time
of your FB project is still going, be it a game or graphics demo or whatever it is!! ;*) !

— 20 —

 FadeCtrlRangeX.DefaultPalFadeCtrlRangeX.DefaultPal

Sub Description:
 Sub FadeCtrlRangeX.DefaultPal (StartColor, EndColor, R.from, G.from, B.from,

FadeIn.Grade)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

R.from = the red shade level (0 to 63) to use as your “fade-out”-based color shade.

G.from = the green shade level (0 to 63) to use as your “fade-out”-based color shade.

B.from = the blue shade level (0 to 63) to use as your “fade-out”-based color shade.

FadeIn.Grade = the custom fade-in level between a palette of a resulting color here and the default GFXlib 2 palette, according
only to the color-order range that you specify using this command.
(63 = fully faded in to palette; 0 = fully faded out to that chosen color)

Notes on this Command:
With this command, you again have FULL and free control of all 64 of the fade levels between the
color of your choice and the default 256-color GFXlib 2 palette, except this time, it is for any part
of the palette!!! Especially an awesome thing for doing such “color-to-default-palette”-based
fade-ins/fade-outs while the on-screen action of the run-time of your FB project is still going, be it
a game or graphics demo or whatever it is!! ;*) ! Keep in mind though that the “EndColor”
number must be higher than the “StartColor” one in order for this command to work the best!

— 21 —

 PalRotate.DefaultPalPalRotate.DefaultPal

Sub Description:
 Sub PalRotate.DefaultPal (StartColor, EndColor, Rotate.Level)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Rotate.Level = the number position in which the selected order of colors will rotate around and around the entire default
GFXlib 2 palette. Increasing and increasing numbers will move the colors forward, while decreasing and
decreasing numbers move the colors backward.

Notes on this Command:
In this command, you can truly custom-rotate the many colors of the default GFXlib 2 palette
forwards or backwards, whether you do part of the palette, or even all of it! It is up to you!! :D
Remember now that the “EndColor” number must be higher than the “StartColor” one in order
for this command to work the best!

— 22 —

 PalRotateFC.DefaultPalPalRotateFC.DefaultPal

Sub Description:
 Sub PalRotateFC.DefaultPal (StartColor, EndColor, Rotate.Level,

FadeIn.Grade)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Rotate.Level = the number position in which the selected order of colors will rotate around and around the whole palette.
Increasing and increasing numbers will move the colors forward, while decreasing and decreasing numbers
move the colors backward.

FadeIn.Grade = the custom fade-in level between a pitch-black palette and the default GFXlib 2 palette, according *only* to
the color-order range that you specify using this command.
(63 = fully faded in to palette; 0 = fully faded out to black)

Notes on this Command:
In this command, not only can you truly custom-rotate the many colors of the default GFXlib 2
palette forwards or backwards — whether you do part of the palette or even all of it — but also,
you have FULL and free control of all 64 of the fade levels as well within your color range, too!!
An awesomely great recommendation for working on your games and graphics demos, I must
say!!! ^-^=b ! Remember, in order for this command to work the best, the “EndColor” number
must be higher than the “StartColor” one!

— 23 —

 PalRotateFCX.DefaultPalPalRotateFCX.DefaultPal

Sub Description:
 Sub PalRotateFCX.DefaultPal (StartColor, EndColor, R.from, G.from, B.from,

Rotate.Level, FadeIn.Grade)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

R.from = the red shade level (0 to 63) to use as your “fade-out”-based color shade.

G.from = the green shade level (0 to 63) to use as your “fade-out”-based color shade.

B.from = the blue shade level (0 to 63) to use as your “fade-out”-based color shade.

Rotate.Level = the number position in which the selected order of colors will rotate around and around the whole palette.
Increasing and increasing numbers will move the colors forward, while decreasing and decreasing numbers
move the colors backward.

FadeIn.Grade = the custom fade-in level between a palette of a resulting color here and the default GFXlib 2 palette, according
only to the color-order range that you specify using this command.
(63 = fully faded in to palette; 0 = fully faded out to that selected color)

Notes on this Command:
Very much the same as PalRotateFC.DefaultPal, except that you are now allowed *as well*
custom fades from any single color you wish to that entire palette, back again, and somewhere in-
between, too!!! Now, be sure to try that in your games and graphics demos, as it will do you real
good here!! ^-^ ! Remember, in order for this command to work the best, the “EndColor”
number must be higher than the “StartColor” one!

Please turn to the very next page for an FB program example of this using the commands
PalRotate.DefaultPal, PalRotateFC.DefaultPal, and PalRotateFCX.DefaultPal!!

— 24 —

Program Example # 2:
(This example uses PalRotate.DefaultPal, PalRotateFC.DefaultPal, and PalRotateFCX.DefaultPal.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we draw up the 256 color entries for the default GFXlib 2 palette.
'--
For DrawPalette = 0 to 255
 Line (DrawPalette, 16)-(DrawPalette, 200), DrawPalette
Next

'Now, we will rotate the palettes around and around!! ;)
'--

Color 15, 4
Locate 1, 1: ? "Let's spin that GFXlib 2 palette wheel!!"
Color 15, 0
Locate 2, 1: ? "- Now using PalRotate.DefaultPal... -"

'--- Using the color entries 20-235 of the default GFXlib 2 palette, we
' rotate the colors of the entire palette forward for a short moment,
' and then backwards for that very same moment.

Rota = 0
DO
 PalRotate.DefaultPal 20, 235, Rota
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 600
Rota = 600
DO
 PalRotate.DefaultPal 20, 235, Rota
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Color 15, 0
Locate 2, 1: ? "- Now using PalRotateFC.DefaultPal... -"

'--- Next, we use the same color entries of the default GFXlib 2 palette
' to once again rotate the colors of the entire palette forward for a
' short moment, and then backwards for that same moment. BUT, we do
' it now with fade-ins/fade-outs as you will see right here! ;*)

Continues on next page.......

— 25 —

“Program Example #2” continued from last page........
Rota = 0
DO
 PalRotateFC.DefaultPal 20, 235, Rota, Rota mod 63
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 600
Rota = 600
DO
 PalRotateFC.DefaultPal 20, 235, Rota, Rota mod 63
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Color 15, 0
Locate 2, 1: ? "- Now using PalRotateFCX.DefaultPal... -"

'--- And now, we do the same thing as the second one here, only this time,
' with color-based fade-ins/fade-outs that will interest you real
' good now, so get psyched for this one!! :D

Rota = 0
DO
 PalRotateFCX.DefaultPal 20, 235, 54, 10, 32, Rota, Rota mod 63
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 600
Rota = 600
DO
 PalRotateFCX.DefaultPal 20, 235, 10, 59, 27, Rota, Rota mod 63
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Rota = 0
DO
 PalRotateFCX.DefaultPal 20, 235, 5, 6, 63, Rota, Rota mod 63
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 600
Rota = 600
DO
 PalRotateFCX.DefaultPal 20, 235, 63, 63, 63, Rota, Rota mod 63
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Color 15, 0
Locate 2, 1: ? "This now concludes the test. Thank you!"

'--- We now end this test indeed, as always, by fading out the palette
' to nothing and exiting this program. ^_^=b !

FadeOut.DefaultPal 63

'--- Good night! z_z

— 26 —

 PalNeg.DefaultPalPalNeg.DefaultPal

Sub Description:
 Sub PalNeg.DefaultPal (Switch)

Switch = the operation of whether or not to switch the screen to a negative (or inverted-colors) version of the default GFXlib 2
palette. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and the screen becomes switched like that, otherwise
this command reverts the palette back to the normal GFXlib 2 default one automatically.

Notes on this Command:
With this command, you can actually switch the screen to a “negative”-based effect of the default
GFXlib 2 palette INSTANTANEOUSLY!

— 27 —

 PalNegRange.DefaultPalPalNegRange.DefaultPal

Sub Description:
 Sub PalNegRange.DefaultPal (StartColor, EndColor, Switch)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Switch = the operation of whether or not to switch the selected order of colors to a negative (or inverted-colors) version of original
colors of the default GFXlib 2 palette. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and the order indeed
becomes switched like that, otherwise this command reverts the specified color-order range back to the original colors of
the normal GFXlib 2 default palette automatically.

Notes on this Command:
Same workings as PalNeg.DefaultPal, except that you can do *any* part of the palette you wish at
anytime! :D Keep in mind now that the “EndColor” number must be higher than the
“StartColor” one in order for this command to work the best!

— 28 —

 PalNegRotate.DefaultPalPalNegRotate.DefaultPal

Sub Description:
 Sub PalNegRotate.DefaultPal (StartColor, EndColor, Rotate.Level)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Rotate.Level = the number position in which the selected order of colors will rotate around and around the whole inverted
version of the default GFXlib 2 palette. Increasing and increasing numbers will move the colors forward,
while decreasing and decreasing numbers move the colors backward.

Notes on this Command:
In this command here, you can truly transform the many colors of the default GFXlib 2 palette into
an inverted-colors version of it, and at the same time custom-rotate it forwards or backwards,
whether you do part of the palette, or even all of it!! Awesome!!! :*) Remember now that the
“EndColor” number must be higher than the “StartColor” one in order for this command to work
the best!

— 29 —

 PalFadeToNega.DefaultPalPalFadeToNega.DefaultPal

Sub Description:
 Sub PalFadeToNega.DefaultPal (millisec)

millisec = the amount of milliseconds determining the speed of fading from the default GFXlib 2 palette all the way to a
negative (or inverted-colors) version of it.

Notes on this Command:
This command lets you actually determine just how fast or slow you want the screen to fade from
the whole default 256-color GFXlib 2 palette all the way to an inverted version of it, all in ONE
single pass! Remember, higher milliseconds determine slower fades, while lower milliseconds
constitute more and more faster fades.

 PalFadeFromNega.DefaultPalPalFadeFromNega.DefaultPal

Sub Description:
 Sub PalFadeFromNega.DefaultPal (millisec)

millisec = the amount of milliseconds determining the speed of fading from a negative (or inverted-colors) version of the entire
default GFXlib 2 palette all the way back to a normal version of it.

Notes on this Command:
Does the exact opposite of PalFadeToNega.DefaultPal, in that it lets you fade from an inverted
version of the entire GFXlib 2 palette right back into a normal version of it once more. Again
here, higher milliseconds = slower fades; while lower milliseconds = faster fades.

— 30 —

 PalFadeRangeToNega.DefaultPalPalFadeRangeToNega.DefaultPal

Sub Description:
 Sub PalFadeRangeToNega.DefaultPal (StartColor, EndColor, millisec)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading from the selected order of colors from the default GFXlib
2 palette all the way to a negative (or inverted-colors) version of the colors from that very same palette.

Notes on this Command:
This command lets you actually determine just how fast or slow you want the screen to fade from
any part of the default 256-color GFXlib 2 palette all the way to an inverted version of that
same palette, all in ONE single pass! Remember, higher milliseconds determine slower fades,
while lower milliseconds constitute more and more faster fades. Also, for this command to work
the best, the “EndColor” number must be higher than the “StartColor” one.

— 31 —

 PalFadeRangeFromNega.DefaultPalPalFadeRangeFromNega.DefaultPal

Sub Description:
 Sub PalFadeRangeFromNega.DefaultPal (StartColor, EndColor, millisec)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading from the selected order of colors from the negative (or
inverted-colors) version of the default GFXlib 2 palette all the way back to the normal colors from that very same
palette.

Notes on this Command:
Does the exact opposite of PalFadeRangeToNega.DefaultPal, in that it lets you fade from *any*
part of the inverted version of the default 256-color GFXlib 2 palette all the way back to the
normal version of that same palette! Remember, higher milliseconds determine slower fades,
while lower milliseconds constitute more and more faster fades. Also, for this command to work
the best, the “EndColor” number must be higher than the “StartColor” one.

Please turn to the very next page for an FB program example of this using the commands
PalNeg.DefaultPal, PalNegRange.DefaultPal, PalNegRotate.DefaultPal,
PalFadeToNega.DefaultPal, PalFadeFromNega.DefaultPal, PalFadeRangeToNega.DefaultPal,
and PalFadeRangeFromNega.DefaultPal!!

— 32 —

Program Example # 3:
(This example uses PalNeg.DefaultPal, PalNegRange.DefaultPal, PalNegRotate.DefaultPal, PalFadeToNega.DefaultPal,
PalFadeFromNega.DefaultPal, PalFadeRangeToNega.DefaultPal, and PalFadeRangeFromNega.DefaultPal.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we draw up the 256 color entries for the default GFXlib 2 palette.
'--
For DrawPalette = 0 to 255
 Line (DrawPalette, 16)-(DrawPalette, 200), DrawPalette
Next

'Now, let's test out some "negative color"-based palette routines!!
'--

Line (0, 0)-(319, 15), 3, BF
Color 15, 3
Locate 1, 1: ? "We inverse the GFXlib 2 default palette"
Locate 2, 1: ? "and back again in *many* exciting ways!!"
sleep 4500

'--- First off, we switch the full entire GFXlib 2 default palette to a
' negative of it *instantly*. Then, let's wait just five (5) seconds
' before shutting that palette right back to its normal state again and
' waiting two (2) more seconds.

PalNeg.DefaultPal Yes
sleep 5000
PalNeg.DefaultPal No
sleep 2000

'--- Let's do the exact same thing here using ONLY color entries 16-173.

PalNegRange.DefaultPal 16, 173, Yes
sleep 5000
PalNegRange.DefaultPal 16, 173, No
sleep 2000

'--- Now, we actually fade the default GFXlib 2 palette into a full
' negative of it in a single pass, measuring just 50 milliseconds per
' fade-step, and then we fade it right back to normal again using that
' same exact speed! ;*)

PalFadeToNega.DefaultPal 50
PalFadeFromNega.DefaultPal 50

Continues on next page.......

— 33 —

“Program Example #3” continued from last page........
'--- Let's do the exact same thing here once again using ONLY color
' entries 64-214, measuring only 22 milliseconds per fade-step!

PalFadeRangeToNega.DefaultPal 64, 214, 22
sleep 5000
PalFadeRangeFromNega.DefaultPal 64, 214, 22
sleep 2000

Line (0, 0)-(319, 15), 3, BF
Color 15, 3
Locate 1, 1: ? "Now, let's rotate around and around the"
Locate 2, 1: ? "inversed-color version of this palette!!"

'--- Using the color entries 20-235 now, we rotate the inversed colors of
' the entire GFXlib 2 default palette forward for a moment, and then
' backwards for that very same moment. Amazing, huh? ^_^

Rota = 0
DO
 PalNegRotate.DefaultPal 20, 235, Rota
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 1200
Rota = 1200
DO
 PalNegRotate.DefaultPal 20, 235, Rota
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Line (0, 0)-(319, 15), 0, BF
Color 15, 0
Locate 1, 1: ? "Thank you so much for viewing this fine"
Locate 2, 1: ? "little demonstration. See you again!!!"

'--- Finally, let's wrap this up now by fading the ENTIRE default GFXlib 2
' palette slowly but *all the way* out in only one pass, using just 63
' milliseconds per fade-step! ;*)

FadeOut.DefaultPal 63

'--- Thank 'ya, thank you very much!! ^_-=b !

— 34 —

 PalNegaFadeCtrl.DefaultPalPalNegaFadeCtrl.DefaultPal

Sub Description:
 Sub PalNegaFadeCtrl.DefaultPal (FadeToNega.Grade)

FadeToNega.Grade = the custom fade-in level between the default GFXlib 2 palette and a negative (or inverted-colors)
version of that very same palette.
(63 = fully faded in to the negative of GFXlib 2 palette; 0 = fully faded out to normal GFXlib 2 palette)

Notes on this Command:
With this command, you have FULL and free reign over all 64 of the fade levels between the
default 256-color GFXlib 2 palette and an inverted version of it! Perfect for doing “negative
color”-based fade-ins/fade-outs while the on-screen action of the run-time of your FB project is
still going, be it a game or graphics demo or whatever it is!! ;*) !

— 35 —

 PalNegaRangeFadeCtrl.DefaultPalPalNegaRangeFadeCtrl.DefaultPal

Sub Description:
 Sub PalNegaRangeFadeCtrl.DefaultPal (StartColor, EndColor, FadeToNega.Grade)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

FadeToNega.Grade = the custom fade-in level between the selected order of colors from default GFXlib 2 palette and a
negative (or inverted-colors) version of those colors from that very same palette.
(63 = fully faded in to the negative of GFXlib 2 palette; 0 = fully faded out to normal GFXlib 2 palette)

Notes on this Command:
Same drill as the command PalNegaFadeCtrl.DefaultPal, only it lets you do ANY part of the
palette right as you please, too, whenever you like!! ^-^ ! A *MUST* for doing “negative
color”-based fade-ins/fade-outs while the on-screen action of the run-time of your FB project is
still going, be it a game or graphics demo or whatever it is!! Do not forget, the “EndColor”
number must be higher than the “StartColor” one in order for this command to work the best
now.

— 36 —

 PalGreyScl.DefaultPalPalGreyScl.DefaultPal

Sub Description:
 Sub PalGreyScl.DefaultPal (Switch, NegaPalSwitch)

Switch = the operation of whether or not to switch the screen to a greyscale version of the default GFXlib 2 palette. Pass 1 or
higher (or either “FBPM.True” or “Yes”) here, and the screen becomes switched like that, otherwise this command
simply reverses the greyscale effect of the GFXlib 2 default one automatically.

NegaPalSwitch = the operation of whether or not to switch the screen *also* to either a greyscale negative version of the
default GFXlib 2 palette or just a regular color negative of that very same palette, depending on the “Switch”
setting that you have just specified using this command. Pass 1 or higher (or either “FBPM.True” or “Yes”)
here, and the screen becomes switched like that, otherwise this command reverts the GFXlib 2 default palette
away from a negative one automatically.

Notes on this Command:
With this command, you can actually switch the screen to a “black-and-white”-based effect of the
default GFXlib 2 palette INSTANTANEOUSLY! At the same time, you can even make a negative
of the very same palette *in addition* to that, as well!! ^-^ !!

— 37 —

 PalGreySclRange.DefaultPalPalGreySclRange.DefaultPal

Sub Description:
 Sub PalGreySclRange.DefaultPal (StartColor, EndColor, Switch, NegaPalSwitch)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Switch = the operation of whether or not to switch the selected order of colors to a greyscale version of the colors from the default
GFXlib 2 palette. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and the screen becomes switched like that,
otherwise this command simply reverses the greyscale effect of those selected colors from the GFXlib 2 default palette
automatically.

NegaPalSwitch = the operation of whether or not to switch the selected order of colors *also* to either a greyscale negative
version of the default GFXlib 2 palette or just a regular color negative of those original colors from that very
same palette, depending on the “Switch” setting that you have just specified using this command. Pass 1 or
higher (or either “FBPM.True” or “Yes”) here, and the screen becomes switched like that, otherwise this
command reverts that same order of colors of the GFXlib 2 default palette away from a negative one
automatically.

Notes on this Command:
Same deal as PalGreyScl.DefaultPal, except that you can use *any* part of the palette you wish at
anytime! :D Keep in mind now that the “EndColor” number must be higher than the
“StartColor” one in order for this command to work the best!

— 38 —

 PalGreySclRotate.DefaultPalPalGreySclRotate.DefaultPal

Sub Description:
 Sub PalGreySclRotate.DefaultPal (StartColor, EndColor, Rotate.Level,

NegaPalSwitch)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Rotate.Level = the number position in which the selected order of colors will rotate around and around the whole greyscale
version of the default GFXlib 2 palette. Increasing and increasing numbers will move the colors forward,
while decreasing and decreasing numbers move the colors backward.

NegaPalSwitch = the operation of whether or not to switch that same order of colors *also* to a negative (or inverted-colors)
of the greyscale of the original colors from the default GFXlib 2 palette that is being rotated around. Pass 1
or higher (or either “FBPM.True” or “Yes”) here, and the screen becomes switched like that, otherwise this
command reverts that same selected order of colors of the GFXlib 2 default palette away from a negative one
automatically, leaving those selected colors just regular greyscale-based ones of that palette indeed.

Notes on this Command:
In this command here, you can truly transform the many colors of the default GFXlib 2 palette into
a greyscale version of it, and at the same time custom-rotate it forwards or backwards, whether
you do part of the palette, or even all of it!! In addition, you can even make a negative of a
greyscale of the GFXlib 2 default palette as well while rotating it!!! Rather white-hot stuff,
wouldn’t you say? :*D !! Remember now that the “EndColor” number must be higher than the
“StartColor” one in order for this command to work the best!

— 39 —

 PalFadeToGreyScl.DefaultPalPalFadeToGreyScl.DefaultPal

Sub Description:
 Sub PalFadeToGreyScl.DefaultPal (millisec, NegaPalSwitch)

millisec = the amount of milliseconds determining the speed of fading from the default GFXlib 2 palette all the way to a
greyscale version of it.

NegaPalSwitch = the operation of whether or not to fade the screen to *rather* a negative (or inverted-colors) of the greyscale
version of the default GFXlib 2 palette, in any speed that you have just specified in the “millisec” setting.
Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and the screen will become like that, otherwise this
command just lets you fade the GFXlib 2 default palette into a normal greyscale version of it automatically.

Notes on this Command:
This command lets you actually determine just how fast or slow you want the screen to fade from
the whole default 256-color GFXlib 2 palette all the way to a greyscale version of it, all in ONE
single pass! Alternatively, on that same pass, you can even fade to a negative of a greyscale of
that very palette, too!! ^_^=b ! Remember, higher milliseconds determine slower fades, while
lower milliseconds constitute more and more faster fades.

— 40 —

 PalFadeFromGreyScl.DefaultPalPalFadeFromGreyScl.DefaultPal

Sub Description:
 Sub PalFadeFromGreyScl.DefaultPal (millisec, NegaPalSwitch)

millisec = the amount of milliseconds determining the speed of fading from the greyscale version of the default GFXlib 2 palette
all the way to a normal version of it.

NegaPalSwitch = the operation of whether or not to fade the screen from *rather* a negative (or inverted-colors) of the
greyscale version of the default GFXlib 2 palette straight to the original “normal colors”-based version of
that palette, in any speed that you have just specified in the “millisec” setting. Pass 1 or higher (or either
“FBPM.True” or “Yes”) here, and the screen will become like that, otherwise this command just lets you
fade the normal greyscale version of the GFXlib 2 default palette back to its original colors automatically.

Notes on this Command:
This command lets you actually determine just how fast or slow you want the screen to fade from
the greyscale version of the entire GFXlib 2 default palette all the way back to its original color-
based state, all in ONE single pass! Alternatively, on that exact same pass, you can even fade
from a greyscale negative of that very palette over to its normal (not negative) and original colors,
too!! ^_^=b ! Remember, higher milliseconds = slower fades; while lower milliseconds =
faster fades.

— 41 —

 PalFadeRangeToGreyScl.DefaultPalPalFadeRangeToGreyScl.DefaultPal

Sub Description:
 Sub PalFadeRangeToGreyScl.DefaultPal (StartColor, EndColor, millisec,

NegaPalSwitch)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading the selected order of colors from the default GFXlib 2
palette all the way to a greyscale version of it.

NegaPalSwitch = the operation of whether or not to fade the selected order of colors to *rather* a negative (or inverted-colors)
of the greyscale version of the default GFXlib 2 palette, in any speed that you have just specified in the
“millisec” setting. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and that color order indeed will
become like that, otherwise this command just lets you fade those same selected colors from the original
GFXlib 2 default palette into a normal greyscale version of it automatically.

Notes on this Command:
This command lets you actually determine just how fast or slow you want the screen to fade
from*any* part of the default 256-color GFXlib 2 palette all the way to a greyscale version of it,
all in ONE single pass! Alternatively, on that same pass, you can even fade any part of that very
same palette to a greyscale negative of it, too!! ^_^=b ! Remember, higher milliseconds
determine slower fades, while lower milliseconds constitute more and more faster fades.

— 42 —

 PalFadeRangeFromGreyScl.DefaultPalPalFadeRangeFromGreyScl.DefaultPal

Sub Description:
 Sub PalFadeRangeFromGreyScl.DefaultPal (StartColor, EndColor, millisec,

NegaPalSwitch)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading the selected order of colors from the greyscale version of
the default GFXlib 2 palette all the way to a normal version of it.

NegaPalSwitch = the operation of whether or not to fade the selected order of colors from *rather* a negative (or inverted-
colors) of the greyscale version of the default GFXlib 2 palette straight to the original “normal colors”-based
version of that same palette, in any speed that you have just specified in the “millisec” setting. Pass 1 or
higher (or either “FBPM.True” or “Yes”) here, and the color order here will become like that, otherwise this
command just lets you fade those exact same selected colors from the normal greyscale version of the
GFXlib 2 default palette back to its original colors automatically.

Notes on this Command:
This command lets you actually determine just how fast or slow you want to fade from *any* part
of the greyscale version of the GFXlib 2 default palette all the way back to its original color-based
state, all in ONE single pass! Alternatively, on any portion of that same palette on a single pass,
you can even fade from a greyscale negative of it over to its normal (not negative) and original
colors, too!! ^_^=b ! And do not forget here, higher milliseconds = slower fades; while lower
milliseconds = faster fades.

Please turn to the very next page for an FB program example of this using the commands
PalGreyScl.DefaultPal, PalGreySclRange.DefaultPal, PalGreySclRotate.DefaultPal,
PalFadeToGreyScl.DefaultPal, PalFadeFromGreyScl.DefaultPal,
PalFadeRangeToGreyScl.DefaultPal, and PalFadeRangeFromGreyScl.DefaultPal!!

— 43 —

Program Example # 4:
(This example uses PalGreyScl.DefaultPal, PalGreySclRange.DefaultPal, PalGreySclRotate.DefaultPal,
PalFadeToGreyScl.DefaultPal, PalFadeFromGreyScl.DefaultPal, PalFadeRangeToGreyScl.DefaultPal, and
PalFadeRangeFromGreyScl.DefaultPal.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we draw up the 256 color entries for the default GFXlib 2 palette.
'--
For DrawPalette = 0 to 255
 Line (DrawPalette, 16)-(DrawPalette, 200), DrawPalette
Next

'Now, do some exciting greyscale palette routines here!! ;*)
'--

Line (0, 0)-(319, 15), 8, BF
Color 15, 8
Locate 1, 1: ? "Let's make the GFXlib 2 default palette"
Locate 2, 1: ? "greyscale and back again and more!!!"
Sleep 4500

'--- First off, we switch the full entire GFXlib 2 default palette to a
' greyscale of it *instantly*. Then between brief moments, we inverse
' it into a greyscale-based negative, then a color negative, and then
' back to a normal version of it again.

PalGreyScl.DefaultPal Yes, No
Sleep 3000
PalGreyScl.DefaultPal Yes, Yes
Sleep 3000
PalGreyScl.DefaultPal No, Yes
Sleep 3000
PalGreyScl.DefaultPal No, No
Sleep 3000

'--- Let's do the exact same thing here using ONLY color entries 16-200.

PalGreySclRange.DefaultPal 16, 200, Yes, No
Sleep 3000
PalGreySclRange.DefaultPal 16, 200, Yes, Yes
Sleep 3000
PalGreySclRange.DefaultPal 16, 200, No, Yes
Sleep 3000
PalGreySclRange.DefaultPal 16, 200, No, No
Sleep 3000

Continues on next page.......

— 44 —

“Program Example #4” continued from last page........
'--- Now, we actually fade the default GFXlib 2 palette into a full
' greyscale of it in a single pass, measuring just 45 milliseconds per
' fade-step, wait two seconds, and then we fade it right back to normal
' again using that same exact speed! ;*)

PalFadeToGreyScl.DefaultPal 45, No
sleep 2000
PalFadeFromGreyScl.DefaultPal 45, No

'--- Let's do it again, but this time, we fade to an entire *negative
' greyscale* of the GFXlib 2 default palette and then back to normal
' again in just the next two passes, measuring at the same exact speed
' per fade-step.

PalFadeToGreyScl.DefaultPal 45, Yes
sleep 2000
PalFadeFromGreyScl.DefaultPal 45, Yes

'--- We repeat the "greyscale/negative greyscale"-based fades once more
' here, only this time, we use color entries 1-166 of the default
' GFXlib 2 palette now, measuring only 25 milliseconds per fade-step.

PalFadeRangeToGreyScl.DefaultPal 1, 166, 25, No
sleep 2000
PalFadeRangeFromGreyScl.DefaultPal 1, 166, 25, No
PalFadeRangeToGreyScl.DefaultPal 1, 166, 25, Yes
sleep 2000
PalFadeRangeFromGreyScl.DefaultPal 1, 166, 25, Yes

Line (0, 0)-(319, 15), 8, BF
Color 15, 8
Locate 1, 1: ? "Now rotating around and around the"
Locate 2, 1: ? "greyscale version of this palette!!"

'--- Using the color entries 20-235 now, we rotate the greyscaled colors of
' the entire GFXlib 2 default palette forward for a moment, and then
' backwards for that very same moment. Amazing, huh? ^_^

Rota = 0
DO
 PalGreySclRotate.DefaultPal 20, 235, Rota, No
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 1200
Rota = 1200
DO
 PalGreySclRotate.DefaultPal 20, 235, Rota, No
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Rota = 0
Line (0, 0)-(319, 15), 8, BF
Color 15, 8
Locate 1, 1: ? "Let's also do the same for the negative"
Locate 2, 1: ? "greyscale version of this palette!!!"

Continues on next page.......

— 45 —

“Program Example #4” *still* continued from last page........
'--- Same thing again, but this time rotating around and around the
' negative greyscale of the entire GFXlib 2 default palette!!

DO
 PalGreySclRotate.DefaultPal 20, 235, Rota, Yes
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 1200
Rota = 1200
DO
 PalGreySclRotate.DefaultPal 20, 235, Rota, Yes
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Line (0, 0)-(319, 15), 0, BF
Color 15, 0
Locate 1, 1: ? "Catch you later now, and thank you!"
Locate 2, 1: ? "Hope you have enjoyed the show!!!"

'--- Finally, let's close this now by fading the ENTIRE default GFXlib 2
' palette slowly but *all the way* out in only one pass, using just 63
' milliseconds per fade-step! ;*)

FadeOut.DefaultPal 63

'--- See you again!! ^-^ !

— 46 —

 PalGreyFadeCtrl.DefaultPalPalGreyFadeCtrl.DefaultPal

Sub Description:
 Sub PalGreyFadeCtrl.DefaultPal (FadeToGrey.Grade, NegaPalSwitch)

FadeToGrey.Grade = the custom fade-in level between the default GFXlib 2 palette and a greyscale version of that very same
palette.
(63 = fully faded in to the greyscale of GFXlib 2 palette; 0 = fully faded out to normal GFXlib 2 palette)

NegaPalSwitch = the operation of whether or not to set the custom fade-in level to *rather* fade between the default GFXlib 2
palette and a negative greyscale version of it. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and
the entire palette will become like that, otherwise this command just sets the custom fade-in level to fade
between the default GFXlib 2 palette and a normal greyscale version of it.

Notes on this Command:
With this command, you have FULL and free reign over all 64 of the fade levels between the
default 256-color GFXlib 2 palette and a greyscaled version of it! Alternatively, you can control
those same fade levels between all the original colors of that very palette and an actual greyscale
negative of it!! Perfect for games and graphics demos in FB!!! ;*) !

— 47 —

 PalGreyRangeFadeCtrl.DefaultPalPalGreyRangeFadeCtrl.DefaultPal

Sub Description:
 Sub PalGreyRangeFadeCtrl.DefaultPal (StartColor, EndColor,

FadeToGrey.Grade, NegaPalSwitch)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

FadeToGrey.Grade = the custom fade-in level between the selected colors of the default GFXlib 2 palette and a greyscale
version of that very same palette.
(63 = fully faded in to the greyscale of GFXlib 2 palette; 0 = fully faded out to normal GFXlib 2 palette)

NegaPalSwitch = the operation of whether or not to set the custom fade-in level to *rather* fade between the default GFXlib 2
palette and a negative greyscale version of it. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and
the selected order of colors will become like that, otherwise this command just sets the custom fade-in level
to fade between that same order of colors of the default GFXlib 2 palette and a normal greyscale version of
them.

Notes on this Command:
Same entire drill as the previous command PalGreyFadeCtrl.DefaultPal, except that you can
actually do any part of the default 256 color GFXlib 2 palette rather instead of just all of it
alone!!! ^_-=b !!

— 48 —

NOTE: These next routines here support the “768-byte”-based palettes only!!
When these following commands are applied in your FB programs, the colors can automatically
change to the shades of *any* custom 768-byte palette that you select, so please be *very*
careful if you are using any 256-color palette(s) at all, alright? ;*) !

 LoadUp768PalLoadUp768Pal

Sub Description:
 Sub LoadUp768Pal (PalFile$)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

Notes on this Command:
This command just does what it says: it lets you automatically load a custom 768-byte palette file
of your choice and simply places it up as your new 256-color palette. It is just like using the
“PALETTE” command in this sense here, you know? ;D

— 49 —

 FadeIn.768PalFadeIn.768Pal

Sub Description:
 Sub FadeIn.768Pal (PalFile$, millisec)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

millisec = the amount of milliseconds determining the speed of fading in from black to the custom palette specified.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the entire
screen to fade from black all the way to your own custom 768-byte palette, all in ONE single
pass!! Remember, higher milliseconds determine slower fades, while lower milliseconds constitute
more and more faster fades.

— 50 —

 FadeOut.768PalFadeOut.768Pal

Sub Description:
 Sub FadeOut.768Pal (PalFile$, millisec)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the specified custom palette all the way to black.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the entire
screen to fade from your own custom 768-byte palette all the way out to pitch blackness, all in
ONE single pass! Remember, higher milliseconds determine slower fades, while lower
milliseconds constitute more and more faster fades.

— 51 —

 FadeInX.768Pal FadeInX.768Pal

Sub Description:
 Sub FadeInX.768Pal (PalFile$, R.from, G.from, B.from, millisec)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

R.from = the red shade level (0 to 63) to fade from.

G.from = the green shade level (0 to 63) to fade from.

B.from = the blue shade level (0 to 63) to fade from.

millisec = the amount of milliseconds determining the speed of fading in from the selected color to the custom palette specified.

Notes on this Command:
On this command, you can actually determine just how fast or slow you want the entire screen to
fade from the color of your choice all the way to your custom 768-byte palette, all in ONE single
pass! Higher milliseconds = slower fades; while lower milliseconds = faster fades.

— 52 —

 FadeOutX.768PalFadeOutX.768Pal

Sub Description:
 Sub FadeOutX.768Pal (PalFile$, R.to, G.to, B.to, millisec)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

R.to = the red shade level (0 to 63) to fade to.

G.to = the green shade level (0 to 63) to fade to.

B.to = the blue shade level (0 to 63) to fade to.

millisec = the amount of milliseconds determining the speed of fading out the specified custom palette to the selected color.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the entire
screen to fade your custom 768-byte palette right into the color of your choice, all in ONE single
pass! Higher milliseconds = slower fades; while lower milliseconds = faster fades.

— 53 —

 FadeInRange.768PalFadeInRange.768Pal

Sub Description:
 Sub FadeInRange.768Pal (PalFile$, StartColor, EndColor, millisec)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading in from black to the custom palette specified.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the color-
order range within your screen to fade from black all the way to your own custom 768-byte
palette, all in ONE single pass! Useful for fading certain parts of the screen in, too!! Remember,
for this command to work the best, the “EndColor” number must be higher than the “StartColor”
one. Also here, higher milliseconds will determine slower fades, while lower milliseconds
constitute more and more faster fades.

— 54 —

 FadeOutRange.768PalFadeOutRange.768Pal

Sub Description:
 Sub FadeOutRange.768Pal (PalFile$, StartColor, EndColor, millisec)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading from the specified custom palette all the way to black.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the color-
order range within your screen to fade from your custom 768-byte palette all the way out to pitch
blackness, all in ONE single pass! Useful for fading out certain parts of the screen, too!!
Remember, for this command to work the best, the “EndColor” number must be higher than the
“StartColor” one. Also here, higher milliseconds will determine slower fades, while lower
milliseconds constitute more and more faster fades.

— 55 —

 FadeInRangeX.768PalFadeInRangeX.768Pal

Sub Description:
 Sub FadeInRangeX.768Pal (PalFile$, StartColor, EndColor, R.from, G.from,

B.from, millisec)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

R.from = the red shade level (0 to 63) to fade from.

G.from = the green shade level (0 to 63) to fade from.

B.from = the blue shade level (0 to 63) to fade from.

millisec = the amount of milliseconds determining the speed of fading in from the selected color to the custom palette specified.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the color-
order range within your screen to fade from your chosen color all the way to the your own custom
768-byte palette, all in ONE single pass! Useful for fading certain parts of the screen in, and for
doing some real cool palette-lighting effects, too!! Remember, for this command to work the best,
the “EndColor” number must be higher than the “StartColor” one. Also here, higher milliseconds
will determine slower fades, while lower milliseconds constitute more and more faster fades.

— 56 —

 FadeOutRangeX.768PalFadeOutRangeX.768Pal

Sub Description:
 Sub FadeOutRangeX.768Pal (PalFile$, StartColor, EndColor, R.to, G.to, B.to,

millisec)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

R.to = the red shade level (0 to 63) to fade to.

G.to = the green shade level (0 to 63) to fade to.

B.to = the blue shade level (0 to 63) to fade to.

millisec = the amount of milliseconds determining the speed of fading out the specified custom palette to the selected color.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the color-
order range within your screen to fade your own custom 768-byte palette right into the color of
your choice, all in ONE single pass! Useful for fading certain parts of the screen in, and for doing
some real cool palette-lighting effects, too!! Remember, for this command to work the best, the
“EndColor” number must be higher than the “StartColor” one. Also here, higher milliseconds
will determine slower fades, while lower milliseconds constitute more and more faster fades.

Please turn to the very next page for an FB program example of this using the commands
LoadUp768Pal, FadeInRangeX.768Pal and FadeOutRangeX.768Pal!!

— 57 —

Program Example # 5:
(This example uses LoadUp768Pal, FadeInRangeX.768Pal and FadeOutRangeX.768Pal.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we draw up the 256 color entries from a custom 768-byte palette.
'---
Pal$ = "RelPal.pal" '<--- This is Relsoft's 768-byte custom palette that
 ' we are gonna be using here for this test!

LoadUp768Pal Pal$ '<--- *VERY* important that we load this baby in here!

For DrawPalette = 0 to 255
 Line (DrawPalette, 8)-(DrawPalette, 200), DrawPalette
Next

'Now, let's work some color fading magic on this, shall we? ^_^ !
'---

Color 15, 1
Locate 1, 1: ? "Working some 768-byte palette magic!!!"

'--- We fade color entries 20-100 of the custom 768-byte palette right to
' yellow in a single pass, measuring 30 millisecs. per fade-step, and
' then we fade it back again using that same color and speed!

FadeOutRangeX.768Pal Pal$, 20, 100, 63, 63, 0, 30
FadeInRangeX.768Pal Pal$, 20, 100, 63, 63, 0, 30

'--- Let's try it the same way with purple, except this time, we use color
' entries 110-255 and with a faster fade speed of 10 millisecs. per
' fade-step!

FadeOutRangeX.768Pal Pal$, 110, 255, 63, 0, 63, 10
FadeInRangeX.768Pal Pal$, 110, 255, 63, 0, 63, 10

'--- How 'bout some chillin' this time with a dash of blue using color
' entries 0-158 and with a *much* slower fade speed of 70 milliseconds
' per fade-step, hmmm? ;)

FadeOutRangeX.768Pal Pal$, 0, 158, 0, 0, 63, 70
FadeInRangeX.768Pal Pal$, 0, 158, 0, 0, 63, 70

'--- Or get some red in and out with color entries 129-203 using a MUCH
' faster fade speed of only 4 milliseconds/fade-step!

FadeOutRangeX.768Pal Pal$, 129, 203, 63, 0, 0, 4
FadeInRangeX.768Pal Pal$, 129, 203, 63, 0, 0, 4

'--- Finally, let's wrap this up now by fading the ENTIRE palette slowly
' but *all the way* out in only one pass, using just 63 milliseconds
' per fade-step! ;*)

FadeOut.768Pal Pal$, 63

— 58 —

 FadeCtrl.768PalFadeCtrl.768Pal

Sub Description:
 Sub FadeCtrl.768Pal (PalFile$, FadeIn.Grade)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

FadeIn.Grade = the custom fade-in level between a pitch-black palette and the specified custom palette.
(63 = fully faded in to palette; 0 = fully faded out to black)

Notes on this Command:
With this command, you have FULL and free control of all 64 of the fade levels between a black
screen and your own custom 768-byte palette! Perfect for doing fade-ins/fade-outs while the on-
screen action of the run-time of your FB project is still going, be it a game or graphics demo or
whatever it is!! ;*) !

— 59 —

 FadeCtrlX.768PalFadeCtrlX.768Pal

Sub Description:
 Sub FadeCtrlX.768Pal (PalFile$, R.from, G.from, B.from, FadeIn.Grade)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

R.from = the red shade level (0 to 63) to use as your “fade-out”-based color shade.

G.from = the green shade level (0 to 63) to use as your “fade-out”-based color shade.

B.from = the blue shade level (0 to 63) to use as your “fade-out”-based color shade.

FadeIn.Grade = the custom fade-in level between an entire palette of a resulting color here and the specified custom palette.
(63 = fully faded in to palette; 0 = fully faded out to that chosen color)

Notes on this Command:
With this command, you have FULL and free control of all 64 of the fade levels between a whole
palette of the color of your choice and your own custom 768-byte palette!! Perfect for doing such
“color-to-custom-palette”-based fade-ins/fade-outs while the on-screen action of the run-time of
your FB project is still going, be it a game or graphics demo or whatever it is!!! ;*) !

— 60 —

 FadeCtrlRangeX.768PalFadeCtrlRangeX.768Pal

Sub Description:
 Sub FadeCtrlRangeX.768Pal (PalFile$, StartColor, EndColor, R.from, G.from,

B.from, FadeIn.Grade)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

R.from = the red shade level (0 to 63) to use as your “fade-out”-based color shade.

G.from = the green shade level (0 to 63) to use as your “fade-out”-based color shade.

B.from = the blue shade level (0 to 63) to use as your “fade-out”-based color shade.

FadeIn.Grade = the custom fade-in level between a palette of a resulting color here and the specified custom palette, according
only to the color-order range that you specify using this command.
(63 = fully faded in to palette; 0 = fully faded out to that chosen color)

Notes on this Command:
With this command, you again have FULL and free control of all 64 of the fade levels between the
color of your choice and your custom 768-byte palette, except this time, it is for any part of the
palette!!! Especially an awesome thing for doing such “color-to-custom-palette”-based fade-
ins/fade-outs while the on-screen action of the run-time of your FB project is still going, be it a
game or graphics demo or whatever it is!!! d=^_^=b ! Keep in mind though that the
“EndColor” number must be higher than the “StartColor” one in order for this command to work
the best!

— 61 —

 PalRotate.768PalPalRotate.768Pal

Sub Description:
 Sub PalRotate.768Pal (PalFile$, StartColor, EndColor, Rotate.Level)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Rotate.Level = the number position in which the selected order of colors will rotate around and around the entire specified
custom palette. Increasing and increasing numbers will move the colors forward, while decreasing and
decreasing numbers move the colors backward.

Notes on this Command:
In this command, you can truly custom-rotate the many colors of your own 768-byte palette
forwards or backwards, whether you do part of the palette, or even all of it! It is up to you!! :D
Remember now that the “EndColor” number must be higher than the “StartColor” one in order
for this command to work the best!

— 62 —

 PalRotateFC.768PalPalRotateFC.768Pal

Sub Description:
 Sub PalRotateFC.768Pal (PalFile$, StartColor, EndColor, Rotate.Level,

FadeIn.Grade)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Rotate.Level = the number position in which the selected order of colors will rotate around and around the whole custom
palette. Increasing and increasing numbers will move the colors forward, while decreasing and decreasing
numbers move the colors backward.

FadeIn.Grade = the custom fade-in level between a pitch-black palette and the specified custom palette, according *only* to
the color-order range that you specify using this command.
(63 = fully faded in to palette; 0 = fully faded out to black)

Notes on this Command:
In this command, not only can you truly custom-rotate the many colors of your own 768-byte
palette forwards or backwards — whether you do part of the palette or even all of it — but also,
you have FULL and free control of all 64 of the fade levels as well within your color range, too!!
An awesomely great recommendation for working on your games and graphics demos, I must
say!!! ^-^=b ! Remember, in order for this command to work the best, the “EndColor” number
must be higher than the “StartColor” one!

— 63 —

 PalRotateFCX.768PalPalRotateFCX.768Pal

Sub Description:
 Sub PalRotateFCX.768Pal (PalFile$, StartColor, EndColor, R.from, G.from,

B.from, Rotate.Level, FadeIn.Grade)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

R.from = the red shade level (0 to 63) to use as your “fade-out”-based color shade.

G.from = the green shade level (0 to 63) to use as your “fade-out”-based color shade.

B.from = the blue shade level (0 to 63) to use as your “fade-out”-based color shade.

Rotate.Level = the number position in which the selected order of colors will rotate around and around the whole custom
palette. Increasing and increasing numbers will move the colors forward, while decreasing and decreasing
numbers move the colors backward.

FadeIn.Grade = the custom fade-in level between a palette of a resulting color here and the specified custom palette, according
only to the color-order range that you specify using this command.
(63 = fully faded in to palette; 0 = fully faded out to that selected color)

Notes on this Command:
Very much the same as PalRotateFC.768Pal, except that you are now allowed *as well* custom
fades from any single color you wish to your entire 768-byte custom palette, back again, and
somewhere in-between, too!!! Now, be sure to try that in your games and graphics demos, as it
will do you rather good here!! ^-^ !! Remember, in order for this command to work the best,
the “EndColor” number must be higher than the “StartColor” one!

Please turn to the very next page for an FB program example of this using the commands
PalRotate.768Pal, PalRotateFC.768Pal, and PalRotateFCX.768Pal!!

— 64 —

Program Example # 6:
(This example uses PalRotate.768Pal, PalRotateFC.768Pal, and PalRotateFCX.768Pal.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we draw up the 256 color entries from a custom 768-byte palette.
'---
Pal$ = "CustomPalette_01.pal" '<--- This is a 768-byte custom palette that
 ' we are gonna be using for this test!

LoadUp768Pal Pal$ '<--- *VERY* important that we load this baby in here!

For DrawPalette = 0 to 255
 Line (DrawPalette, 16)-(DrawPalette, 200), DrawPalette
Next

'Now, we will rotate the palettes around and around!! ;)
'--

Color 15, 4
Locate 1, 1: ? "Let's spin that 768-byte palette wheel!!"
Color 15, 0
Locate 2, 1: ? "- Now using PalRotate.768Pal... -"

'--- Using the color entries 20-235 of the custom 768-byte palette, we
' rotate the colors of the entire palette forward for a short moment,
' and then backwards for that very same moment.

Rota = 0
DO
 PalRotate.768Pal Pal$, 20, 235, Rota
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 600
Rota = 600
DO
 PalRotate.768Pal Pal$, 20, 235, Rota
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Color 15, 0
Locate 2, 1: ? "- Now using PalRotateFC.768Pal... -"

'--- Next, we use the same color entries of the custom 768-byte palette
' to once again rotate the colors of the entire palette forward for a
' short moment, and then backwards for that same moment. BUT, we do
' it now with fade-ins/fade-outs as you will see right here! ;*)

Continues on next page.......

— 65 —

“Program Example #6” continued from last page........
Rota = 0
DO
 PalRotateFC.768Pal Pal$, 20, 235, Rota, Rota mod 63
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 600
Rota = 600
DO
 PalRotateFC.768Pal Pal$, 20, 235, Rota, Rota mod 63
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Color 15, 0
Locate 2, 1: ? "- Now using PalRotateFCX.768Pal... -"

'--- And now, we do the same thing as the second one here, only this time,
' with color-based fade-ins/fade-outs that will interest you real
' good now, so do get psyched-up for this one!! :D

Rota = 0
DO
 PalRotateFCX.768Pal Pal$, 20, 235, 54, 10, 32, Rota, Rota mod 63
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 600
Rota = 600
DO
 PalRotateFCX.768Pal Pal$, 20, 235, 10, 59, 27, Rota, Rota mod 63
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Rota = 0
DO
 PalRotateFCX.768Pal Pal$, 20, 235, 5, 6, 63, Rota, Rota mod 63
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 600
Rota = 600
DO
 PalRotateFCX.768Pal Pal$, 20, 235, 63, 63, 63, Rota, Rota mod 63
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Color 15, 0
Locate 2, 1: ? "Thank you for watching this. Peace!!"

'--- We now end this test indeed, as always, by fading out the palette
' to nothing and exiting this program. ^_^=b !

FadeOut.768Pal Pal$, 63
'--- Peace!!! ;*)

— 66 —

 PalNeg.768PalPalNeg.768Pal

Sub Description:
 Sub PalNeg.768Pal (PalFile$, Switch)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

Switch = the operation of whether or not to switch the screen to a negative (or inverted-colors) version of the specified custom
palette. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and the screen becomes switched like that, otherwise
this command reverts the palette back to that specified custom one automatically.

Notes on this Command:
With this command, you can actually switch the screen to a “negative”-based effect of your own
custom 768-byte palette INSTANTANEOUSLY!

— 67 —

 PalNegRange.768PalPalNegRange.768Pal

Sub Description:
 Sub PalNegRange.768Pal (PalFile$, StartColor, EndColor, Switch)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Switch = the operation of whether or not to switch the selected order of colors to a negative (or inverted-colors) version of original
colors of the specified custom palette. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and the order indeed
becomes switched like that, otherwise this command reverts the specified color-order range back to the original colors of
that custom palette automatically.

Notes on this Command:
Same workings as PalNeg.768Pal, except that you can do *any* part of your custom 768-byte
palette you wish at anytime!! :D ! Keep in mind now that the “EndColor” number must be
higher than the “StartColor” one in order for this command to work the best!

— 68 —

 PalNegRotate.768PalPalNegRotate.768Pal

Sub Description:
 Sub PalNegRotate.768Pal (PalFile$, StartColor, EndColor, Rotate.Level)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Rotate.Level = the number position in which the selected order of colors will rotate around and around the whole inverted
version of the specified custom palette. Increasing and increasing numbers will move the colors forward,
while decreasing and decreasing numbers move the colors backward.

Notes on this Command:
In this command here, you can truly transform the many colors of your own custom 768-byte
palette into an inverted-colors version of it, and at the same time custom-rotate it forwards or
backwards, whether you do part of the palette, or even all of it!! Rather so awesome!!! ^_^=b
Remember now that the “EndColor” number must be higher than the “StartColor” one in order
for this command to work the best!

— 69 —

 PalFadeToNega.768PalPalFadeToNega.768Pal

Sub Description:
 Sub PalFadeToNega.768Pal (PalFile$, millisec)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the specified custom palette all the way to a
negative (or inverted-colors) version of it.

Notes on this Command:
This command lets you actually determine just how fast or slow you want the screen to fade from
your whole custom 768-byte palette all the way to an inverted version of it, all in ONE single
pass! Remember, higher milliseconds determine slower fades, while lower milliseconds constitute
more and more faster fades.

— 70 —

 PalFadeFromNega.768PalPalFadeFromNega.768Pal

Sub Description:
 Sub PalFadeFromNega.768Pal (PalFile$, millisec)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from a negative (or inverted-colors) version of the
specified custom palette all the way back to a normal version of it.

Notes on this Command:
Does the exact opposite of PalFadeToNega.768Pal, in that it lets you fade from an inverted
version of the entire custom 768-byte palette of your choice right back into a normal version of it
once more. Again here, higher milliseconds = slower fades; while lower milliseconds = faster
fades.

— 71 —

 PalFadeRangeToNega.768PalPalFadeRangeToNega.768Pal

Sub Description:
 Sub PalFadeRangeToNega.768Pal (PalFile$, StartColor, EndColor, millisec)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading from the selected order of colors from the specified
custom palette all the way to a negative (or inverted-colors) version of the colors from that very same palette.

Notes on this Command:
This command lets you actually determine just how fast or slow you want the screen to fade from
any part of your custom 768-byte palette all the way to an inverted version of that same palette,
all in ONE single pass! Remember, higher milliseconds determine slower fades, while lower
milliseconds constitute more and more faster fades. Also, for this command to work the best, the
“EndColor” number must be higher than the “StartColor” one.

— 72 —

 PalFadeRangeFromNega.768PalPalFadeRangeFromNega.768Pal

Sub Description:
 Sub PalFadeRangeFromNega.768Pal (PalFile$, StartColor, EndColor, millisec)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading from the selected order of colors from the negative (or
inverted-colors) version of the specified custom palette all the way back to the normal colors from that very same
palette.

Notes on this Command:
Does the exact opposite of PalFadeRangeToNega.768Pal, in that it lets you fade from *any* part
of the inverted version of your custom 768-byte palette all the way back to the normal version of
that same palette! Remember, higher milliseconds determine slower fades, while lower
milliseconds constitute more and more faster fades. Also, for this command to work the best, the
“EndColor” number must be higher than the “StartColor” one.

Please turn to the very next page for an FB program example of this using the commands
PalNeg.768Pal, PalNegRange.768Pal, PalNegRotate.768Pal, PalFadeToNega.768Pal,
PalFadeFromNega.768Pal, PalFadeRangeToNega.768Pal, and
PalFadeRangeFromNega.768Pal!!

— 73 —

Program Example # 7:
(This example uses PalNeg.768Pal, PalNegRange.768Pal, PalNegRotate.768Pal, PalFadeToNega.768Pal,
PalFadeFromNega.768Pal, PalFadeRangeToNega.768Pal, and PalFadeRangeFromNega.768Pal.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we draw up the 256 color entries from a custom 768-byte palette.
'---
Pal$ = "CustomPalette_01.pal" '<--- This is a 768-byte custom palette that
 ' we are gonna be using for this test!

LoadUp768Pal Pal$ '<--- *VERY* important that we load this baby in here!

For DrawPalette = 0 to 255
 Line (DrawPalette, 16)-(DrawPalette, 200), DrawPalette
Next

'Now, let's test out some "negative color"-based palette routines
'on our 768-byte palette that we just loaded, shall we? ^_^
'--

Line (0, 0)-(319, 15), 5, BF
Color 15, 5
Locate 1, 1: ? "We inverse the 768-byte custom palette"
Locate 2, 1: ? "and back again in *many* exciting ways!!"
sleep 4500

'--- First off, we switch the full entire custom 768-byte palette to a
' negative of it *instantly*. Then, let's wait just five (5) seconds
' before shutting that palette right back to its normal state again and
' waiting two (2) more seconds.

PalNeg.768Pal Pal$, Yes
sleep 5000
PalNeg.768Pal Pal$, No
sleep 2000

'--- Let's do the exact same thing here using ONLY color entries 16-173.

PalNegRange.768Pal Pal$, 16, 173, Yes
sleep 5000
PalNegRange.768Pal Pal$, 16, 173, No
sleep 2000

Continues on next page.......

— 74 —

“Program Example #7” continued from last page........
'--- Now, we actually fade our custom 768-byte palette into a full
' negative of it in a single pass, measuring just 50 milliseconds per
' fade-step, and then we fade it right back to normal again using that
' same exact speed! ;*)

PalFadeToNega.768Pal Pal$, 50
PalFadeFromNega.768Pal Pal$, 50

'--- Let's do the exact same thing here once again using ONLY color
' entries 64-214, measuring only 22 milliseconds per fade-step!

PalFadeRangeToNega.768Pal Pal$, 64, 214, 22
sleep 5000
PalFadeRangeFromNega.768Pal Pal$, 64, 214, 22
sleep 2000

Line (0, 0)-(319, 15), 5, BF
Color 15, 5
Locate 1, 1: ? "Now, let's rotate around and around the"
Locate 2, 1: ? "inversed-color version of this palette!!"

'--- Using the color entries 20-235 now, we rotate the inversed colors of
' the entire custom 768-byte palette forward for a moment, and then
' backwards for that very same moment. Amazing, huh? ^_^

Rota = 0
DO
 PalNegRotate.768Pal Pal$, 20, 235, Rota
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 1200
Rota = 1200
DO
 PalNegRotate.768Pal Pal$, 20, 235, Rota
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Line (0, 0)-(319, 15), 0, BF
Color 15, 0
Locate 1, 1: ? "Catch you again later, and thank you so"
Locate 2, 1: ? "much for your fine viewing of this!!!"

'--- Finally, let's wrap this up now by fading the ENTIRE custom 768-byte
' palette slowly but *all the way* out in only one pass, using just 63
' milliseconds per fade-step! ;*)

FadeOut.768Pal Pal$, 63

'--- Bye for now!! ^_-=b !

— 75 —

 PalNegaFadeCtrl.768PalPalNegaFadeCtrl.768Pal

Sub Description:
 Sub PalNegaFadeCtrl.768Pal (PalFile$, FadeToNega.Grade)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

FadeToNega.Grade = the custom fade-in level between the specified custom palette and a negative (or inverted-colors)
version of that very same palette.
(63 = fully faded in to the negative of 768-byte palette; 0 = fully faded out to normal 768-byte palette)

Notes on this Command:
With this command, you have FULL and free reign over all 64 of the fade levels between your
own custom 768-byte palette and an inverted version of it! Perfect for doing “negative
color”-based fade-ins/fade-outs while the on-screen action of the run-time of your FB project is
still going, be it a game or graphics demo or whatever it is!! ;*) !

— 76 —

 PalNegaRangeFadeCtrl.768PalPalNegaRangeFadeCtrl.768Pal

Sub Description:
 Sub PalNegaRangeFadeCtrl.768Pal (PalFile$, StartColor, EndColor,

FadeToNega.Grade)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

FadeToNega.Grade = the custom fade-in level between the selected order of colors from the specified custom palette and a
negative (or inverted-colors) version of those colors from that very same palette.
(63 = fully faded in to the negative of 768-byte palette; 0 = fully faded out to normal 768-byte palette)

Notes on this Command:
Same drill as the command PalNegaFadeCtrl.768Pal, only it lets you do ANY part of your own
768-byte palette right as you please, too, whenever you like!!! ^-^ !! A *MUST* for doing
“negative color”-based fade-ins/fade-outs while the on-screen action of the run-time of your FB
project is still going, be it a game or graphics demo or whatever it is, definitely!!! Do not forget,
the “EndColor” number must be higher than the “StartColor” one in order for this command to
work the best now.

— 77 —

 PalGreyScl.768PalPalGreyScl.768Pal

Sub Description:
 Sub PalGreyScl.768Pal (PalFile$, Switch, NegaPalSwitch)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

Switch = the operation of whether or not to switch the screen to a greyscale version of the specified custom palette. Pass 1 or
higher (or either “FBPM.True” or “Yes”) here, and the screen becomes switched like that, otherwise this command
simply reverses the greyscale effect of that specified palette automatically.

NegaPalSwitch = the operation of whether or not to switch the screen *also* to either a greyscale negative version of the
specified custom palette or just a regular color negative of that very same palette, depending on the “Switch”
setting that you have just specified using this command. Pass 1 or higher (or either “FBPM.True” or “Yes”)
here, and the screen becomes switched like that, otherwise this command reverts that specified palette away
from a negative one automatically.

Notes on this Command:
With this command, you can actually switch the screen to a “black-and-white”-based effect of
your own custom 768-byte palette INSTANTANEOUSLY! At the same time, you can even make a
negative of the very same palette *in addition* to that, as well!! ^-^ !!

— 78 —

 PalGreySclRange.768PalPalGreySclRange.768Pal

Sub Description:
 Sub PalGreySclRange.768Pal (PalFile$, StartColor, EndColor, Switch,

NegaPalSwitch)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Switch = the operation of whether or not to switch the selected order of colors to a greyscale version of the colors from the
specified custom palette. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and the screen becomes switched like
that, otherwise this command simply reverses the greyscale effect of those selected colors from that specified palette
automatically.

NegaPalSwitch = the operation of whether or not to switch the selected order of colors *also* to either a greyscale negative
version of the specified custom palette or just a regular color negative of those original colors from that very
same palette, depending on the “Switch” setting that you have just specified using this command. Pass 1 or
higher (or either “FBPM.True” or “Yes”) here, and the screen becomes switched like that, otherwise this
command reverts that same order of colors of that specified palette away from a negative one automatically.

Notes on this Command:
Same deal as PalGreyScl.768Pal, except that you can use *any* part of your 768-byte custom
palette you wish at anytime! :D Keep in mind now that the “EndColor” number must be higher
than the “StartColor” one in order for this command to work the best!

— 79 —

 PalGreySclRotate.768PalPalGreySclRotate.768Pal

Sub Description:
 Sub PalGreySclRotate.768Pal (PalFile$, StartColor, EndColor, Rotate.Level,

NegaPalSwitch)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Rotate.Level = the number position in which the selected order of colors will rotate around and around the whole greyscale
version of the custom specified palette. Increasing and increasing numbers will move the colors forward,
while decreasing and decreasing numbers move the colors backward.

NegaPalSwitch = the operation of whether or not to switch that same order of colors *also* to a negative (or inverted-colors)
of the greyscale of the original colors from the specified custom palette that is being rotated around. Pass 1
or higher (or either “FBPM.True” or “Yes”) here, and the screen becomes switched like that, otherwise this
command reverts that same selected order of colors of that specified palette away from a negative one
automatically, leaving those selected colors just regular greyscale-based ones of that palette indeed.

Notes on this Command:
In this command here, you can truly transform the many colors of your very own custom 768-byte
palette into a greyscale version of it, and at the same time custom-rotate it forwards or backwards,
whether you do part of the palette, or even all of it!! In addition, you can even make a negative
of a greyscale of that exact same palette as well while rotating it!!! Rather white-hot stuff,
wouldn’t you say? :*D !! Remember now that the “EndColor” number must be higher than the
“StartColor” one in order for this command to work the best!

— 80 —

 PalFadeToGreyScl.768PalPalFadeToGreyScl.768Pal

Sub Description:
 Sub PalFadeToGreyScl.768Pal (PalFile$, millisec, NegaPalSwitch)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the specified custom palette all the way to a
greyscale version of it.

NegaPalSwitch = the operation of whether or not to fade the screen to *rather* a negative (or inverted-colors) of the greyscale
version of the specified custom palette, in any speed that you have just specified in the “millisec” setting.
Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and the screen will become like that, otherwise this
command just lets you fade that chosen palette into a normal greyscale version of it automatically.

Notes on this Command:
This command lets you actually determine just how fast or slow you want the screen to fade from
the whole custom 768-byte palette of yours all the way to a greyscale version of it, all in ONE
single pass! Alternatively, on that same pass, you can even fade to a negative of a greyscale of
that very palette, too!! ^_^=b ! Remember, higher milliseconds determine slower fades, while
lower milliseconds constitute more and more faster fades.

— 81 —

 PalFadeFromGreyScl.768PalPalFadeFromGreyScl.768Pal

Sub Description:
 Sub PalFadeFromGreyScl.768Pal (PalFile$, millisec, NegaPalSwitch)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the greyscale version of the specified custom palette
all the way to a normal version of it.

NegaPalSwitch = the operation of whether or not to fade the screen from *rather* a negative (or inverted-colors) of the
greyscale version of the specified custom palette straight to the original “normal colors”-based version of
that same palette, in any speed that you have just specified in the “millisec” setting. Pass 1 or higher (or
either “FBPM.True” or “Yes”) here, and the screen will become like that, otherwise this command just lets
you fade the normal greyscale version of that chosen palette back to its original colors automatically.

Notes on this Command:
This command lets you actually determine just how fast or slow you want the screen to fade from
the greyscale version of your custom 768-byte palette all the way back to its original color-based
state, all in ONE single pass! Alternatively, on that exact same pass, you can even fade from a
greyscale negative of that very palette over to its normal (not negative) and original colors, too!!
^_^=b ! Remember, higher milliseconds = slower fades; while lower milliseconds = faster
fades.

— 82 —

 PalFadeRangeToGreyScl.768PalPalFadeRangeToGreyScl.768Pal

Sub Description:
 Sub PalFadeRangeToGreyScl.768Pal (PalFile$, StartColor, EndColor, millisec,

NegaPalSwitch)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading the selected order of colors from the specified custom
palette all the way to a greyscale version of it.

NegaPalSwitch = the operation of whether or not to fade the selected order of colors to *rather* a negative (or inverted-colors)
of the greyscale version of the specified custom palette, in any speed that you have just specified in the
“millisec” setting. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and that color order indeed will
become like that, otherwise this command just lets you fade those same selected colors from that specified
palette into a normal greyscale version of it automatically.

Notes on this Command:
This command lets you actually determine just how fast or slow you want the screen to fade
from*any* part of your custom 768-byte palette all the way to a greyscale version of it, all in ONE
single pass! Alternatively, on that same pass, you can even fade any part of that very same
palette to a greyscale negative of it, too!! ^_^=b ! Remember, higher milliseconds determine
slower fades, while lower milliseconds constitute more and more faster fades.

— 83 —

 PalFadeRangeFromGreyScl.768PalPalFadeRangeFromGreyScl.768Pal

Sub Description:
 Sub PalFadeRangeFromGreyScl.768Pal (PalFile$, StartColor, EndColor,

millisec, NegaPalSwitch)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading the selected order of colors from the greyscale version of
the specified custom palette all the way to a normal version of it.

NegaPalSwitch = the operation of whether or not to fade the selected order of colors from *rather* a negative (or inverted-
colors) of the greyscale version of the specified custom palette straight to the original “normal colors”-based
version of that same palette, in any speed that you have just specified in the “millisec” setting. Pass 1 or
higher (or either “FBPM.True” or “Yes”) here, and the color order here will become like that, otherwise this
command just lets you fade those exact same selected colors from the normal greyscale version of that
specified palette back to its original colors automatically.

Notes on this Command:
This command lets you actually determine just how fast or slow you want to fade from *any* part
of the greyscale version of your very own 768-byte custom palette all the way back to its original
color-based state, all in ONE single pass! Alternatively, on any portion of that same palette on a
single pass, you can even fade from a greyscale negative of it over to its normal (not negative)
and original colors, too!! ^_^=b ! And do not forget here, higher milliseconds = slower fades;
while lower milliseconds = faster fades.

Please turn to the very next page for an FB program example of this using the commands
PalGreyScl.768Pal, PalGreySclRange.768Pal, PalGreySclRotate.768Pal,
PalFadeToGreyScl.768Pal, PalFadeFromGreyScl.768Pal, PalFadeRangeToGreyScl.768Pal, and
PalFadeRangeFromGreyScl.768Pal!!

— 84 —

Program Example # 8:
(This example uses PalGreyScl.768Pal, PalGreySclRange.768Pal, PalGreySclRotate.768Pal, PalFadeToGreyScl.768Pal,
PalFadeFromGreyScl.768Pal, PalFadeRangeToGreyScl.768Pal, and PalFadeRangeFromGreyScl.768Pal.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we draw up the 256 color entries from a custom 768-byte palette.
'---
Pal$ = "CustomPalette_01.pal" '<--- This is a 768-byte custom palette that
 ' we are gonna be using for this test!

LoadUp768Pal Pal$ '<--- *VERY* important that we load this baby in here!

For DrawPalette = 0 to 255
 Line (DrawPalette, 16)-(DrawPalette, 200), DrawPalette
Next

'Now, do some exciting greyscale palette routines here for our
'custom 768-byte palette!!! ;*) !
'---

Line (0, 0)-(319, 15), 8, BF
Color 15, 8
Locate 1, 1: ? "Let's make the 768-byte custom palette"
Locate 2, 1: ? "greyscale and back again and more!!!"
Sleep 4500

'--- First off, we switch the full entire custom 768-byte palette to a
' greyscale of it *instantly*. Then between brief moments, we inverse
' it into a greyscale-based negative, then a color negative, and then
' back to a normal version of it again.

PalGreyScl.768Pal Pal$, Yes, No
Sleep 3000
PalGreyScl.768Pal Pal$, Yes, Yes
Sleep 3000
PalGreyScl.768Pal Pal$, No, Yes
Sleep 3000
PalGreyScl.768Pal Pal$, No, No
Sleep 3000

'--- Let's do the exact same thing here using ONLY color entries 16-200.

PalGreySclRange.768Pal Pal$, 16, 200, Yes, No
Sleep 3000
PalGreySclRange.768Pal Pal$, 16, 200, Yes, Yes
Sleep 3000
PalGreySclRange.768Pal Pal$, 16, 200, No, Yes
Sleep 3000
PalGreySclRange.768Pal Pal$, 16, 200, No, No
Sleep 3000

Continues on next page.......

— 85 —

“Program Example #8” continued from last page........
'--- Now, we actually fade our custom 768-byte palette into a full
' greyscale of it in a single pass, measuring just 100 milliseconds per
' fade-step, wait two seconds, and then we fade it right back to normal
' again using that same exact speed! ;*)

PalFadeToGreyScl.768Pal Pal$, 100, No
sleep 2000
PalFadeFromGreyScl.768Pal Pal$, 100, No

'--- Let's do it again, but this time, we fade to an entire *negative
' greyscale* of that custom 768-byte palette and then back to normal
' again in just the next two passes, measuring at the same exact speed
' per fade-step.

PalFadeToGreyScl.768Pal Pal$, 100, Yes
sleep 2000
PalFadeFromGreyScl.768Pal Pal$, 100, Yes

'--- We repeat the "greyscale/negative greyscale"-based fades once more
' here, only this time, we use color entries 1-166 of our custom
' 768-byte palette now, measuring only 10 milliseconds per fade-step.

PalFadeRangeToGreyScl.768Pal Pal$, 1, 166, 10, No
sleep 2000
PalFadeRangeFromGreyScl.768Pal Pal$, 1, 166, 10, No
PalFadeRangeToGreyScl.768Pal Pal$, 1, 166, 10, Yes
sleep 2000
PalFadeRangeFromGreyScl.768Pal Pal$, 1, 166, 10, Yes

Line (0, 0)-(319, 15), 8, BF
Color 15, 8
Locate 1, 1: ? "Now rotating around and around the"
Locate 2, 1: ? "greyscale version of this palette!!"

'--- Using the color entries 20-235 now, we rotate the greyscaled colors of
' that exact 768-byte palette forward for a moment, and then backwards
' for that very same moment. Rather amazing, huh? ^_^

Rota = 0
DO
 PalGreySclRotate.768Pal Pal$, 20, 235, Rota, No
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 1200
Rota = 1200
DO
 PalGreySclRotate.768Pal Pal$, 20, 235, Rota, No
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Rota = 0
Line (0, 0)-(319, 15), 8, BF
Color 15, 8
Locate 1, 1: ? "Let's also do the same for the negative"
Locate 2, 1: ? "greyscale version of this palette!!!"

Continues on next page.......

— 86 —

“Program Example #8” *still* continued from last page........
'--- Same thing again, but this time rotating around and around the
' negative greyscale of our same 768-byte custom palette!!

DO
 PalGreySclRotate.768Pal Pal$, 20, 235, Rota, Yes
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 1200
Rota = 1200
DO
 PalGreySclRotate.768Pal Pal$, 20, 235, Rota, Yes
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Line (0, 0)-(319, 15), 0, BF
Color 15, 0
Locate 1, 1: ? "Check you out later, and God so richly"
Locate 2, 1: ? "bless 'ya!! Thank you so much now!!!"

'--- Finally, let's close this now by fading our custom 768-byte
' palette slowly but *all the way* out in only one pass, using
' just 63 milliseconds per fade-step! ;*)

FadeOut.768Pal Pal$, 63

'--- Signing off, over and out!! ^-^=b !

— 87 —

 PalGreyFadeCtrl.768PalPalGreyFadeCtrl.768Pal

Sub Description:
 Sub PalGreyFadeCtrl.768Pal (PalFile$, FadeToGrey.Grade, NegaPalSwitch)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

FadeToGrey.Grade = the custom fade-in level between the specified custom palette and a greyscale version of that very same
palette.
(63 = fully faded in to the greyscale of 768-byte palette; 0 = fully faded out to normal 768-byte palette)

NegaPalSwitch = the operation of whether or not to set the custom fade-in level to *rather* fade between the specified custom
palette and a negative greyscale version of it. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and
the entire palette will become like that, otherwise this command just sets the custom fade-in level to fade
between that same specified palette and a normal greyscale version of it.

Notes on this Command:
With this command, you have FULL and free reign over all 64 of the fade levels between your
own custom 768-byte palette and a greyscaled version of it! Alternatively, you can control those
same fade levels between all the original colors of that very palette and an actual greyscale
negative of it!! Perfect for games and graphics demos in FB!!! ;*) !

— 88 —

 PalGreyRangeFadeCtrl.768PalPalGreyRangeFadeCtrl.768Pal

Sub Description:
 Sub PalGreyRangeFadeCtrl.768Pal (PalFile$, StartColor, EndColor,

FadeToGrey.Grade, NegaPalSwitch)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

FadeToGrey.Grade = the custom fade-in level between the selected colors of the specified custom palette and a greyscale
version of that very same palette.
(63 = fully faded in to the greyscale of 768-byte palette; 0 = fully faded out to normal 768-byte palette)

NegaPalSwitch = the operation of whether or not to set the custom fade-in level to *rather* fade between the specified custom
palette and a negative greyscale version of it. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and
the selected order of colors will become like that, otherwise this command just sets the custom fade-in level
to fade between that same order of colors of that exact specified palette and a normal greyscale version of
them.

Notes on this Command:
Same entire drill as the previous command PalGreyFadeCtrl.768Pal, except that you can actually
do any part of your custom 768-byte palette rather instead of just all of it alone!!! ^_-=b !!

— 89 —

NOTE: These next routines here support the PP256-based palettes only!!
When these following commands are applied in your FB programs, the colors can automatically
change to the shades of *any* custom PixelPlus 256 (or PP256) palette that you select, so please
be *very* careful if you are using any 256-color palette(s) at all, alright? ;*) !

 LoadUpPP256PalLoadUpPP256Pal

Sub Description:
 Sub LoadUpPP256Pal (PP256PalFile$)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

Notes on this Command:
This command just does what it says: it lets you automatically load a custom PP256-based palette
file of your choice and simply places it up as your new 256-color palette. It is just like using the
“PALETTE” command in this sense here, you know? ;D

— 90 —

 FadeIn.PP256FadeIn.PP256

Sub Description:
 Sub FadeIn.PP256 (PP256PalFile$, millisec)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

millisec = the amount of milliseconds determining the speed of fading in from black to the custom palette specified.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the entire
screen to fade from black all the way to your own custom PP256-based palette, all in ONE single
pass!! Remember, higher milliseconds determine slower fades, while lower milliseconds constitute
more and more faster fades.

— 91 —

 FadeOut.PP256FadeOut.PP256

Sub Description:
 Sub FadeOut.PP256 (PP256PalFile$, millisec)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the specified custom palette all the way to black.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the entire
screen to fade from your own custom PP256-based palette all the way out to pitch blackness, all
in ONE single pass! Remember, higher milliseconds determine slower fades, while lower
milliseconds constitute more and more faster fades.

— 92 —

 FadeInX.PP256 FadeInX.PP256

Sub Description:
 Sub FadeInX.PP256 (PP256PalFile$, R.from, G.from, B.from, millisec)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

R.from = the red shade level (0 to 63) to fade from.

G.from = the green shade level (0 to 63) to fade from.

B.from = the blue shade level (0 to 63) to fade from.

millisec = the amount of milliseconds determining the speed of fading in from the selected color to the custom palette specified.

Notes on this Command:
On this command, you can actually determine just how fast or slow you want the entire screen to
fade from the color of your choice all the way to your custom PP256-based palette, all in ONE
single pass! Higher milliseconds = slower fades; while lower milliseconds = faster fades.

— 93 —

 FadeOutX.PP256FadeOutX.PP256

Sub Description:
 Sub FadeOutX.PP256 (PP256PalFile$, R.to, G.to, B.to, millisec)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

R.to = the red shade level (0 to 63) to fade to.

G.to = the green shade level (0 to 63) to fade to.

B.to = the blue shade level (0 to 63) to fade to.

millisec = the amount of milliseconds determining the speed of fading out the specified custom palette to the selected color.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the entire
screen to fade your custom PP256-based palette right into the color of your choice, all in ONE
single pass! Higher milliseconds = slower fades; while lower milliseconds = faster fades.

— 94 —

 FadeInRange.PP256FadeInRange.PP256

Sub Description:
 Sub FadeInRange.PP256 (PP256PalFile$, StartColor, EndColor, millisec)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading in from black to the custom palette specified.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the color-
order range within your screen to fade from black all the way to your own custom PP256-based
palette, all in ONE single pass! Useful for fading certain parts of the screen in, too!! Remember,
for this command to work the best, the “EndColor” number must be higher than the “StartColor”
one. Also here, higher milliseconds will determine slower fades, while lower milliseconds
constitute more and more faster fades.

— 95 —

 FadeOutRange.PP256FadeOutRange.PP256

Sub Description:
 Sub FadeOutRange.PP256 (PP256PalFile$, StartColor, EndColor, millisec)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading from the specified custom palette all the way to black.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the color-
order range within your screen to fade from your custom PP256-based palette all the way out to
pitch blackness, all in ONE single pass! Useful for fading out certain parts of the screen, too!!
Remember, for this command to work the best, the “EndColor” number must be higher than the
“StartColor” one. Also here, higher milliseconds will determine slower fades, while lower
milliseconds constitute more and more faster fades.

— 96 —

 FadeInRangeX.PP256FadeInRangeX.PP256

Sub Description:
 Sub FadeInRangeX.PP256 (PP256PalFile$, StartColor, EndColor, R.from, G.from,

B.from, millisec)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

R.from = the red shade level (0 to 63) to fade from.

G.from = the green shade level (0 to 63) to fade from.

B.from = the blue shade level (0 to 63) to fade from.

millisec = the amount of milliseconds determining the speed of fading in from the selected color to the custom palette specified.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the color-
order range within your screen to fade from your chosen color all the way to the your own custom
PP256-based palette, all in ONE single pass! Useful for fading certain parts of the screen in, and
for doing some real cool palette-lighting effects, too!! Remember, for this command to work the
best, the “EndColor” number must be higher than the “StartColor” one. Also here, higher
milliseconds will determine slower fades, while lower milliseconds constitute more and more faster
fades.

— 97 —

 FadeOutRangeX.PP256FadeOutRangeX.PP256

Sub Description:
 Sub FadeOutRangeX.PP256 (PP256PalFile$, StartColor, EndColor, R.to, G.to,

B.to, millisec)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

R.to = the red shade level (0 to 63) to fade to.

G.to = the green shade level (0 to 63) to fade to.

B.to = the blue shade level (0 to 63) to fade to.

millisec = the amount of milliseconds determining the speed of fading out the specified custom palette to the selected color.

Notes on this Command:
When using this command, you can actually determine just how fast or slow you want the color-
order range within your screen to fade your own custom PP256-based palette right into the color
of your choice, all in ONE single pass! Useful for fading certain parts of the screen in, and for
doing some real cool palette-lighting effects, too!! Remember, for this command to work the best,
the “EndColor” number must be higher than the “StartColor” one. Also here, higher milliseconds
will determine slower fades, while lower milliseconds constitute more and more faster fades.

Please turn to the very next page for an FB program example of this using the commands
LoadUpPP256Pal, FadeInRangeX.PP256 and FadeOutRangeX.PP256!!

— 98 —

Program Example # 9:
(This example uses LoadUpPP256Pal, FadeInRangeX.PP256 and FadeOutRangeX.PP256.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we draw up the 256 color entries from a custom PP256-based palette!
'--
Pal$ = "PP256Pal1.pal" '<--- This is our custom palette fresh outta PP256
 ' that we are gonna be using here for this test!

LoadUpPP256Pal Pal$ '<--- *VERY* important that we load this baby in here!

For DrawPalette = 0 to 255
 Line (DrawPalette, 8)-(DrawPalette, 200), DrawPalette
Next

'Now, let's work some color fading magic again on this, shall we? ^_^ !
'--

Color 15, 1
Locate 1, 1: ? "Working some PP256-based palette jazz!!!"

'--- We fade color entries 20-100 of our custom PP256 palette right to
' yellow in a single pass, measuring 30 millisecs. per fade-step, and
' then we fade it back again using that same color and speed!

FadeOutRangeX.PP256 Pal$, 20, 100, 63, 63, 0, 30
FadeInRangeX.PP256 Pal$, 20, 100, 63, 63, 0, 30

'--- Let's try it the same way with purple, except this time, we use color
' entries 110-255 and with a faster fade speed of 10 millisecs. per
' fade-step!

FadeOutRangeX.PP256 Pal$, 110, 255, 63, 0, 63, 10
FadeInRangeX.PP256 Pal$, 110, 255, 63, 0, 63, 10

'--- How 'bout some chillin' this time with a dash of blue using color
' entries 0-158 and with a *much* slower fade speed of 70 milliseconds
' per fade-step, hmmm? ;)

FadeOutRangeX.PP256 Pal$, 0, 158, 0, 0, 63, 70
FadeInRangeX.PP256 Pal$, 0, 158, 0, 0, 63, 70

'--- Or get some red in and out with color entries 129-203 using a MUCH
' faster fade speed of only 4 milliseconds/fade-step!

FadeOutRangeX.PP256 Pal$, 129, 203, 63, 0, 0, 4
FadeInRangeX.PP256 Pal$, 129, 203, 63, 0, 0, 4

'--- Finally, let's wrap this up now by fading the ENTIRE palette slowly
' but *all the way* out in only one pass, using just 63 milliseconds
' per fade-step! ;*)

FadeOut.PP256 Pal$, 63

— 99 —

 FadeCtrl.PP256FadeCtrl.PP256

Sub Description:
 Sub FadeCtrl.PP256 (PP256PalFile$, FadeIn.Grade)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

FadeIn.Grade = the custom fade-in level between a pitch-black palette and the specified custom palette.
(63 = fully faded in to palette; 0 = fully faded out to black)

Notes on this Command:
With this command, you have FULL and free control of all 64 of the fade levels between a black
screen and your own custom PP256-based palette! Perfect for doing fade-ins/fade-outs while the
on-screen action of the run-time of your FB project is still going, be it a game or graphics demo or
whatever it is!! ;*) !

— 100 —

 FadeCtrlX.PP256FadeCtrlX.PP256

Sub Description:
 Sub FadeCtrlX.PP256 (PP256PalFile$, R.from, G.from, B.from, FadeIn.Grade)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

R.from = the red shade level (0 to 63) to use as your “fade-out”-based color shade.

G.from = the green shade level (0 to 63) to use as your “fade-out”-based color shade.

B.from = the blue shade level (0 to 63) to use as your “fade-out”-based color shade.

FadeIn.Grade = the custom fade-in level between an entire palette of a resulting color here and the specified custom palette.
(63 = fully faded in to palette; 0 = fully faded out to that chosen color)

Notes on this Command:
With this command, you have FULL and free control of all 64 of the fade levels between a whole
palette of the color of your choice and your own custom PP256-based palette!! Perfect for doing
such “color-to-custom-palette”-based fade-ins/fade-outs while the on-screen action of the run-time
of your FB project is still going, be it a game or graphics demo or whatever it is!!! ;*) !

— 101 —

 FadeCtrlRangeX.PP256FadeCtrlRangeX.PP256

Sub Description:
 Sub FadeCtrlRangeX.PP256 (PP256PalFile$, StartColor, EndColor, R.from,

G.from, B.from, FadeIn.Grade)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

R.from = the red shade level (0 to 63) to use as your “fade-out”-based color shade.

G.from = the green shade level (0 to 63) to use as your “fade-out”-based color shade.

B.from = the blue shade level (0 to 63) to use as your “fade-out”-based color shade.

FadeIn.Grade = the custom fade-in level between a palette of a resulting color here and the specified custom palette, according
only to the color-order range that you specify using this command.
(63 = fully faded in to palette; 0 = fully faded out to that chosen color)

Notes on this Command:
With this command, you again have FULL and free control of all 64 of the fade levels between the
color of your choice and your own custom PP256-based palette, except this time, it is for any part
of the palette!!! Especially an awesome thing for doing such “color-to-custom-palette”-based
fade-ins/fade-outs while the on-screen action of the run-time of your FB project is still going, be it
a game or graphics demo or whatever it is!!! d=^_^=b ! Keep in mind though that the
“EndColor” number must be higher than the “StartColor” one in order for this command to work
the best!

— 102 —

 PalRotate.PP256PalRotate.PP256

Sub Description:
 Sub PalRotate.PP256 (PP256PalFile$, StartColor, EndColor, Rotate.Level)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Rotate.Level = the number position in which the selected order of colors will rotate around and around the entire specified
custom palette. Increasing and increasing numbers will move the colors forward, while decreasing and
decreasing numbers move the colors backward.

Notes on this Command:
In this command, you can truly custom-rotate the many colors of your own PP256-based palette
forwards or backwards, whether you do part of the palette, or even all of it! It is up to you!! :D
Remember now that the “EndColor” number must be higher than the “StartColor” one in order
for this command to work the best!

— 103 —

 PalRotateFC.PP256PalRotateFC.PP256

Sub Description:
 Sub PalRotateFC.PP256 (PP256PalFile$, StartColor, EndColor, Rotate.Level,

FadeIn.Grade)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Rotate.Level = the number position in which the selected order of colors will rotate around and around the whole custom
palette. Increasing and increasing numbers will move the colors forward, while decreasing and decreasing
numbers move the colors backward.

FadeIn.Grade = the custom fade-in level between a pitch-black palette and the specified custom palette, according *only* to
the color-order range that you specify using this command.
(63 = fully faded in to palette; 0 = fully faded out to black)

Notes on this Command:
In this command, not only can you truly custom-rotate the many colors of your own PP256-based
palette forwards or backwards — whether you do part of the palette or even all of it — but also,
you have FULL and free control of all 64 of the fade levels as well within your color range, too!!
An awesomely great recommendation for working on your games and graphics demos, I must
say!!! ^-^=b ! Remember, in order for this command to work the best, the “EndColor” number
must be higher than the “StartColor” one!

— 104 —

 PalRotateFCX.PP256PalRotateFCX.PP256

Sub Description:
 Sub PalRotateFCX.PP256 (PP256PalFile$, StartColor, EndColor, R.from, G.from,

B.from, Rotate.Level, FadeIn.Grade)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

R.from = the red shade level (0 to 63) to use as your “fade-out”-based color shade.

G.from = the green shade level (0 to 63) to use as your “fade-out”-based color shade.

B.from = the blue shade level (0 to 63) to use as your “fade-out”-based color shade.

Rotate.Level = the number position in which the selected order of colors will rotate around and around the whole custom
palette. Increasing and increasing numbers will move the colors forward, while decreasing and decreasing
numbers move the colors backward.

FadeIn.Grade = the custom fade-in level between a palette of a resulting color here and the specified custom palette, according
only to the color-order range that you specify using this command.
(63 = fully faded in to palette; 0 = fully faded out to that selected color)

Notes on this Command:
Very much the same as PalRotateFC.PP256, except that you are now allowed *as well* custom
fades from any single color you wish to your entire PP256-based custom palette, back again, and
somewhere in-between, too!!! Now, be sure to try that in your games and graphics demos, as it
will do you rather good here!! ^-^ !! Remember, in order for this command to work the best,
the “EndColor” number must be higher than the “StartColor” one!

Please turn to the very next page for an FB program example of this using the commands
PalRotate.PP256, PalRotateFC.PP256, and PalRotateFCX.PP256!!

— 105 —

Program Example # 10 :
(This example uses PalRotate.PP256, PalRotateFC.PP256, and PalRotateFCX.PP256.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we draw up the 256 color entries from a custom PP256-based palette!
'--
Pal$ = "PP256Pal1.pal" '<--- This is our custom palette fresh outta PP256
 ' that we are gonna be using here for this test!

LoadUpPP256Pal Pal$ '<--- *VERY* important that we load this baby in here!

For DrawPalette = 0 to 255
 Line (DrawPalette, 16)-(DrawPalette, 200), DrawPalette
Next

'Now, we will rotate the palettes around and around!! ;)
'--

Color 15, 4
Locate 1, 1: ? "Let's spin that PP256 palette wheel!!!"
Color 15, 0
Locate 2, 1: ? "- Now using PalRotate.PP256... -"

'--- Using the color entries 20-235 of our custom PP256-based palette,
' we rotate the colors of the entire palette forward for a short
' moment, and then backwards for that very same moment.

Rota = 0
DO
 PalRotate.PP256 Pal$, 20, 235, Rota
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 600
Rota = 600
DO
 PalRotate.PP256 Pal$, 20, 235, Rota
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Color 15, 0
Locate 2, 1: ? "- Now using PalRotateFC.PP256... -"

'--- Next, we use the same color entries of that custom PP256 palette
' to once again rotate the colors of the entire palette forward for a
' short moment, and then backwards for that same moment. BUT, we do
' it now with fade-ins/fade-outs as you will see right here! ;*)

Continues on next page.......

— 106 —

“Program Example #10” continued from last page........
Rota = 0
DO
 PalRotateFC.PP256 Pal$, 20, 235, Rota, Rota mod 63
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 600
Rota = 600
DO
 PalRotateFC.PP256 Pal$, 20, 235, Rota, Rota mod 63
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Color 15, 0
Locate 2, 1: ? "- Now using PalRotateFCX.PP256... -"

'--- And now, we do the same thing as the second one here, only this time,
' with color-based fade-ins/fade-outs that will interest you real
' good now, so do get psyched-up for this one!! :D

Rota = 0
DO
 PalRotateFCX.PP256 Pal$, 20, 235, 54, 10, 32, Rota, Rota mod 63
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 600
Rota = 600
DO
 PalRotateFCX.PP256 Pal$, 20, 235, 10, 59, 27, Rota, Rota mod 63
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Rota = 0
DO
 PalRotateFCX.PP256 Pal$, 20, 235, 5, 6, 63, Rota, Rota mod 63
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 600
Rota = 600
DO
 PalRotateFCX.PP256 Pal$, 20, 235, 63, 63, 63, Rota, Rota mod 63
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Color 15, 0
Locate 2, 1: ? "Thanks so much for viewing. See 'ya!!"

'--- We now end this test indeed, as always, by fading out the palette
' to nothing and exiting this program. ^_^=b !

FadeOut.PP256 Pal$, 63
'--- Word up, and check you later!!! ;*)

— 107 —

 PalNeg.PP256PalNeg.PP256

Sub Description:
 Sub PalNeg.PP256 (PP256PalFile$, Switch)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

Switch = the operation of whether or not to switch the screen to a negative (or inverted-colors) version of the specified custom
palette. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and the screen becomes switched like that, otherwise
this command reverts the palette back to that specified custom one automatically.

Notes on this Command:
With this command, you can actually switch the screen to a “negative”-based effect of your own
custom PP256 palette INSTANTANEOUSLY!

— 108 —

 PalNegRange.PP256PalNegRange.PP256

Sub Description:
 Sub PalNegRange.PP256 (PP256PalFile$, StartColor, EndColor, Switch)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Switch = the operation of whether or not to switch the selected order of colors to a negative (or inverted-colors) version of original
colors of the specified custom palette. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and the order indeed
becomes switched like that, otherwise this command reverts the specified color-order range back to the original colors of
that custom palette automatically.

Notes on this Command:
Same workings as PalNeg.PP256, except that you can do *any* part of your custom PP256-based
palette you wish at anytime!! :D ! Keep in mind now that the “EndColor” number must be
higher than the “StartColor” one in order for this command to work the best!

— 109 —

 PalNegRotate.PP256PalNegRotate.PP256

Sub Description:
 Sub PalNegRotate.PP256 (PP256PalFile$, StartColor, EndColor, Rotate.Level)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Rotate.Level = the number position in which the selected order of colors will rotate around and around the whole inverted
version of the specified custom palette. Increasing and increasing numbers will move the colors forward,
while decreasing and decreasing numbers move the colors backward.

Notes on this Command:
In this command here, you can truly transform the many colors of your own custom PP256 palette
into an inverted-colors version of it, and at the same time custom-rotate it forwards or backwards,
whether you do part of the palette, or even all of it!! Rather so awesome!!! ^_^=b Remember
now that the “EndColor” number must be higher than the “StartColor” one in order for this
command to work the best!

— 110 —

 PalFadeToNega.PP256PalFadeToNega.PP256

Sub Description:
 Sub PalFadeToNega.PP256 (PP256PalFile$, millisec)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the specified custom palette all the way to a
negative (or inverted-colors) version of it.

Notes on this Command:
This command lets you actually determine just how fast or slow you want the screen to fade from
your whole custom PP256-based palette all the way to an inverted version of it, all in ONE single
pass! Remember, higher milliseconds determine slower fades, while lower milliseconds constitute
more and more faster fades.

— 111 —

 PalFadeFromNega.PP256PalFadeFromNega.PP256

Sub Description:
 Sub PalFadeFromNega.PP256 (PP256PalFile$, millisec)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from a negative (or inverted-colors) version of the
specified custom palette all the way back to a normal version of it.

Notes on this Command:
Does the exact opposite of PalFadeToNega.PP256, in that it lets you fade from an inverted
version of the entire custom PP256-based palette of your choice right back into a normal version
of it once more. Cool stuff! Again right here, higher milliseconds = slower fades; while lower
milliseconds = faster fades.

— 112 —

 PalFadeRangeToNega.PP256PalFadeRangeToNega.PP256

Sub Description:
 Sub PalFadeRangeToNega.PP256 (PP256PalFile$, StartColor, EndColor, millisec)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading from the selected order of colors from the specified
custom palette all the way to a negative (or inverted-colors) version of the colors from that very same palette.

Notes on this Command:
This command lets you actually determine just how fast or slow you want the screen to fade from
any part of your custom PP256-based palette all the way to an inverted version of that same
palette, all in ONE single pass! Remember, higher milliseconds determine slower fades, while
lower milliseconds constitute more and more faster fades. Also, for this command to work the
best, the “EndColor” number must be higher than the “StartColor” one.

— 113 —

 PalFadeRangeFromNega.PP256PalFadeRangeFromNega.PP256

Sub Description:
 Sub PalFadeRangeFromNega.PP256 (PP256PalFile$, StartColor, EndColor,

millisec)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading from the selected order of colors from the negative (or
inverted-colors) version of the specified custom palette all the way back to the normal colors from that very same
palette.

Notes on this Command:
Does the exact opposite of PalFadeRangeToNega.PP256, in that it lets you fade from *any* part
of the inverted version of your custom PP256-based palette all the way back to the normal version
of that same palette! Remember, higher milliseconds determine slower fades, while lower
milliseconds constitute more and more faster fades. Also, for this command to work the best, the
“EndColor” number must be higher than the “StartColor” one.

Please turn to the very next page for an FB program example of this using the commands
PalNeg.PP256, PalNegRange.PP256, PalNegRotate.PP256, PalFadeToNega.PP256,
PalFadeFromNega.PP256, PalFadeRangeToNega.PP256, and PalFadeRangeFromNega.PP256!!

— 114 —

Program Example # 11 :
(This example uses PalNeg.PP256, PalNegRange.PP256, PalNegRotate.PP256, PalFadeToNega.PP256,
PalFadeFromNega.PP256, PalFadeRangeToNega.PP256, and PalFadeRangeFromNega.PP256.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we draw up the 256 color entries from a custom PP256-based palette!
'--
Pal$ = "PP256Pal1.pal" '<--- This is our custom palette fresh outta PP256
 ' that we are gonna be using here for this test!

LoadUpPP256Pal Pal$ '<--- *VERY* important that we load this baby in here!

For DrawPalette = 0 to 255
 Line (DrawPalette, 16)-(DrawPalette, 200), DrawPalette
Next

'Now, let's test out some "negative color"-based palette routines
'on our PP256-based palette that we just loaded, shall we? ^_^
'--

Line (0, 0)-(319, 15), 5, BF
Color 15, 5
Locate 1, 1: ? "We inverse our PP256-based palette and"
Locate 2, 1: ? "back again in *many* exciting ways!!!"
sleep 4500

'--- First off, we switch the full entire custom PP256-based palette to a
' negative of it *instantly*. Then, let's wait just five (5) seconds
' before shutting that palette right back to its normal state again and
' waiting two (2) more seconds.

PalNeg.PP256 Pal$, Yes
sleep 5000
PalNeg.PP256 Pal$, No
sleep 2000

'--- Let's do the exact same thing here using ONLY color entries 16-173.

PalNegRange.PP256 Pal$, 16, 173, Yes
sleep 5000
PalNegRange.PP256 Pal$, 16, 173, No
sleep 2000

Continues on next page.......

— 115 —

“Program Example #11” continued from last page........
'--- Now, we actually fade our custom PP256-based palette into a full
' negative of it in a single pass, measuring just 67 milliseconds per
' fade-step, and then we fade it right back to normal again using that
' same exact speed! ;*)

PalFadeToNega.PP256 Pal$, 67
PalFadeFromNega.PP256 Pal$, 67

'--- Let's do the exact same thing here once again using ONLY color
' entries 64-214, measuring only 36 milliseconds per fade-step!

PalFadeRangeToNega.PP256 Pal$, 64, 214, 36
sleep 5000
PalFadeRangeFromNega.PP256 Pal$, 64, 214, 36
sleep 2000

Line (0, 0)-(319, 15), 5, BF
Color 15, 5
Locate 1, 1: ? "Now, let's rotate around and around the"
Locate 2, 1: ? "inversed-color version of this palette!!"

'--- Using the color entries 20-235 now, we rotate the inversed colors of
' that entire custom PP256 palette forward for a moment, and then
' backwards for that very same moment. Amazing, huh? ^_^

Rota = 0
DO
 PalNegRotate.PP256 Pal$, 20, 235, Rota
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 1200
Rota = 1200
DO
 PalNegRotate.PP256 Pal$, 20, 235, Rota
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Line (0, 0)-(319, 15), 0, BF
Color 15, 0
Locate 1, 1: ? "See you once more, and I hope you have"
Locate 2, 1: ? "enjoyed this one!! Thank you!!!"

'--- Finally, let's wrap this up now by fading the ENTIRE custom PP256
' palette slowly but *all the way* out in only one pass, using just 63
' milliseconds per fade-step! ;*)

FadeOut.PP256 Pal$, 63

'--- Catch you later, and thanks again!! ^_-=b !

— 116 —

 PalNegaFadeCtrl.PP256PalNegaFadeCtrl.PP256

Sub Description:
 Sub PalNegaFadeCtrl.PP256 (PP256PalFile$, FadeToNega.Grade)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

FadeToNega.Grade = the custom fade-in level between the specified custom palette and a negative (or inverted-colors)
version of that very same palette.
(63 = fully faded in to the negative of PP256 palette; 0 = fully faded out to normal PP256 palette)

Notes on this Command:
With this command, you have FULL and free reign over all 64 of the fade levels between your
own custom PP256 palette and an inverted version of it! Perfect for doing “negative color”-based
fade-ins/fade-outs while the on-screen action of the run-time of your FB project is still going, be it
a game or graphics demo or whatever it is!! ;*) !

— 117 —

 PalNegaRangeFadeCtrl.PP256PalNegaRangeFadeCtrl.PP256

Sub Description:
 Sub PalNegaRangeFadeCtrl.PP256 (PP256PalFile$, StartColor, EndColor,

FadeToNega.Grade)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

FadeToNega.Grade = the custom fade-in level between the selected order of colors from the specified custom palette and a
negative (or inverted-colors) version of those colors from that very same palette.
(63 = fully faded in to the negative of PP256 palette; 0 = fully faded out to normal PP256 palette)

Notes on this Command:
Same drill as the command PalNegaFadeCtrl.PP256, only it lets you do ANY part of your own
PP256-based palette right as you please, too, whenever you like!!! ^-^ !! A *MUST* for doing
“negative color”-based fade-ins/fade-outs while the on-screen action of the run-time of your FB
project is still going, be it a game or graphics demo or whatever it is, definitely!!! Do not forget,
the “EndColor” number must be higher than the “StartColor” one in order for this command to
work the best now.

— 118 —

 PalGreyScl.PP256PalGreyScl.PP256

Sub Description:
 Sub PalGreyScl.PP256 (PP256PalFile$, Switch, NegaPalSwitch)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

Switch = the operation of whether or not to switch the screen to a greyscale version of the specified custom palette. Pass 1 or
higher (or either “FBPM.True” or “Yes”) here, and the screen becomes switched like that, otherwise this command
simply reverses the greyscale effect of that specified palette automatically.

NegaPalSwitch = the operation of whether or not to switch the screen *also* to either a greyscale negative version of the
specified custom palette or just a regular color negative of that very same palette, depending on the “Switch”
setting that you have just specified using this command. Pass 1 or higher (or either “FBPM.True” or “Yes”)
here, and the screen becomes switched like that, otherwise this command reverts that specified palette away
from a negative one automatically.

Notes on this Command:
With this command, you can actually switch the screen to a “black-and-white”-based effect of
your own custom PP256-based palette INSTANTANEOUSLY! At the same time, you can even
make a negative of the very same palette *in addition* to that, as well!! ^-^ !!

— 119 —

 PalGreySclRange.PP256PalGreySclRange.PP256

Sub Description:
 Sub PalGreySclRange.PP256 (PP256PalFile$, StartColor, EndColor, Switch,

NegaPalSwitch)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Switch = the operation of whether or not to switch the selected order of colors to a greyscale version of the colors from the
specified custom palette. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and the screen becomes switched like
that, otherwise this command simply reverses the greyscale effect of those selected colors from that specified palette
automatically.

NegaPalSwitch = the operation of whether or not to switch the selected order of colors *also* to either a greyscale negative
version of the specified custom palette or just a regular color negative of those original colors from that very
same palette, depending on the “Switch” setting that you have just specified using this command. Pass 1 or
higher (or either “FBPM.True” or “Yes”) here, and the screen becomes switched like that, otherwise this
command reverts that same order of colors of that specified palette away from a negative one automatically.

Notes on this Command:
Same deal as PalGreyScl.PP256, except that you can use *any* part of your PP256-based custom
palette you wish at anytime! :D Keep in mind now that the “EndColor” number must be higher
than the “StartColor” one in order for this command to work the best!

— 120 —

 PalGreySclRotate.PP256PalGreySclRotate.PP256

Sub Description:
 Sub PalGreySclRotate.PP256 (PP256PalFile$, StartColor, EndColor,

Rotate.Level, NegaPalSwitch)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

Rotate.Level = the number position in which the selected order of colors will rotate around and around the whole greyscale
version of the custom specified palette. Increasing and increasing numbers will move the colors forward,
while decreasing and decreasing numbers move the colors backward.

NegaPalSwitch = the operation of whether or not to switch that same order of colors *also* to a negative (or inverted-colors)
of the greyscale of the original colors from the specified custom palette that is being rotated around. Pass 1
or higher (or either “FBPM.True” or “Yes”) here, and the screen becomes switched like that, otherwise this
command reverts that same selected order of colors of that specified palette away from a negative one
automatically, leaving those selected colors just regular greyscale-based ones of that palette indeed.

Notes on this Command:
In this command here, you can truly transform the many colors of your very own custom PP256
palette into a greyscale version of it, and at the same time custom-rotate it forwards or backwards,
whether you do part of the palette, or even all of it!! In addition, you can even make a negative
of a greyscale of that exact same palette as well while rotating it!!! Rather white-hot stuff,
wouldn’t you say? :*D !! Remember now that the “EndColor” number must be higher than the
“StartColor” one in order for this command to work the best!

— 121 —

 PalFadeToGreyScl.PP256PalFadeToGreyScl.PP256

Sub Description:
 Sub PalFadeToGreyScl.PP256 (PP256PalFile$, millisec, NegaPalSwitch)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the specified custom palette all the way to a
greyscale version of it.

NegaPalSwitch = the operation of whether or not to fade the screen to *rather* a negative (or inverted-colors) of the greyscale
version of the specified custom palette, in any speed that you have just specified in the “millisec” setting.
Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and the screen will become like that, otherwise this
command just lets you fade that chosen palette into a normal greyscale version of it automatically.

Notes on this Command:
This command lets you actually determine just how fast or slow you want the screen to fade from
the whole custom PP256 palette of yours all the way to a greyscale version of it, all in ONE single
pass! Alternatively, on that same pass, you can even fade to a negative of a greyscale of that
very palette, too!! ^_^=b ! Remember, higher milliseconds determine slower fades, while
lower milliseconds constitute more and more faster fades.

— 122 —

 PalFadeFromGreyScl.PP256PalFadeFromGreyScl.PP256

Sub Description:
 Sub PalFadeFromGreyScl.PP256 (PP256PalFile$, millisec, NegaPalSwitch)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the greyscale version of the specified custom palette
all the way to a normal version of it.

NegaPalSwitch = the operation of whether or not to fade the screen from *rather* a negative (or inverted-colors) of the
greyscale version of the specified custom palette straight to the original “normal colors”-based version of
that same palette, in any speed that you have just specified in the “millisec” setting. Pass 1 or higher (or
either “FBPM.True” or “Yes”) here, and the screen will become like that, otherwise this command just lets
you fade the normal greyscale version of that chosen palette back to its original colors automatically.

Notes on this Command:
This command lets you actually determine just how fast or slow you want the screen to fade from
the greyscale version of your custom PP256 palette all the way back to its original color-based
state, all in ONE single pass! Alternatively, on that exact same pass, you can even fade from a
greyscale negative of that very palette over to its normal (not negative) and original colors, too!!
^_^=b ! Remember, higher milliseconds = slower fades; while lower milliseconds = faster
fades.

— 123 —

 PalFadeRangeToGreyScl.PP256PalFadeRangeToGreyScl.PP256

Sub Description:
 Sub PalFadeRangeToGreyScl.PP256 (PP256PalFile$, StartColor, EndColor,

millisec, NegaPalSwitch)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading the selected order of colors from the specified custom
palette all the way to a greyscale version of it.

NegaPalSwitch = the operation of whether or not to fade the selected order of colors to *rather* a negative (or inverted-colors)
of the greyscale version of the specified custom palette, in any speed that you have just specified in the
“millisec” setting. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and that color order indeed will
become like that, otherwise this command just lets you fade those same selected colors from that specified
palette into a normal greyscale version of it automatically.

Notes on this Command:
This command lets you actually determine just how fast or slow you want the screen to fade
from*any* part of your custom PP256-based palette all the way to a greyscale version of it, all in
ONE single pass! Alternatively, on that same pass, you can even fade any part of that very same
palette to a greyscale negative of it, too!! ^_^=b ! Remember, higher milliseconds determine
slower fades, while lower milliseconds constitute more and more faster fades.

— 124 —

 PalFadeRangeFromGreyScl.PP256PalFadeRangeFromGreyScl.PP256

Sub Description:
 Sub PalFadeRangeFromGreyScl.PP256 (PP256PalFile$, StartColor, EndColor,

millisec, NegaPalSwitch)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

millisec = the amount of milliseconds determining the speed of fading the selected order of colors from the greyscale version of
the specified custom palette all the way to a normal version of it.

NegaPalSwitch = the operation of whether or not to fade the selected order of colors from *rather* a negative (or inverted-
colors) of the greyscale version of the specified custom palette straight to the original “normal colors”-based
version of that same palette, in any speed that you have just specified in the “millisec” setting. Pass 1 or
higher (or either “FBPM.True” or “Yes”) here, and the color order here will become like that, otherwise this
command just lets you fade those exact same selected colors from the normal greyscale version of that
specified palette back to its original colors automatically.

Notes on this Command:
This command lets you actually determine just how fast or slow you want to fade from *any* part
of the greyscale version of your very own PP256 custom palette all the way back to its original
color-based state, all in ONE single pass! Alternatively, on any portion of that same palette on a
single pass, you can even fade from a greyscale negative of it over to its normal (not negative)
and original colors, too!! ^_^=b ! And do not forget here, higher milliseconds = slower fades;
while lower milliseconds = faster fades.

Please turn to the very next page for an FB program example of this using the commands
PalGreyScl.PP256, PalGreySclRange.PP256, PalGreySclRotate.PP256, PalFadeToGreyScl.PP256,
PalFadeFromGreyScl.PP256, PalFadeRangeToGreyScl.PP256, and
PalFadeRangeFromGreyScl.PP256!!

— 125 —

Program Example # 12 :
(This example uses PalGreyScl.PP256, PalGreySclRange.PP256, PalGreySclRotate.PP256, PalFadeToGreyScl.PP256,
PalFadeFromGreyScl.PP256, PalFadeRangeToGreyScl.PP256, and PalFadeRangeFromGreyScl.PP256.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we draw up the 256 color entries from a custom PP256-based palette!
'--
Pal$ = "PP256Pal1.pal" '<--- This is our custom palette fresh outta PP256
 ' that we are gonna be using here for this test!

LoadUpPP256Pal Pal$ '<--- *VERY* important that we load this baby in here!

For DrawPalette = 0 to 255
 Line (DrawPalette, 16)-(DrawPalette, 200), DrawPalette
Next

'Now, do some exciting greyscale palette routines here for our
'custom PP256-based palette!!! ;*) !
'---

Line (0, 0)-(319, 15), 8, BF
Color 15, 8
Locate 1, 1: ? "Let's make the PP256 custom palette"
Locate 2, 1: ? "greyscale and back again and more!!!"
Sleep 4500

'--- First off, we switch the full entire custom PP256-based palette to a
' greyscale of it *instantly*. Then between brief moments, we inverse
' it into a greyscale-based negative, then a color negative, and then
' back to a normal version of it again.

PalGreyScl.PP256 Pal$, Yes, No
Sleep 3000
PalGreyScl.PP256 Pal$, Yes, Yes
Sleep 3000
PalGreyScl.PP256 Pal$, No, Yes
Sleep 3000
PalGreyScl.PP256 Pal$, No, No
Sleep 3000

'--- Let's do the exact same thing here using ONLY color entries 16-200.

PalGreySclRange.PP256 Pal$, 16, 200, Yes, No
Sleep 3000
PalGreySclRange.PP256 Pal$, 16, 200, Yes, Yes
Sleep 3000
PalGreySclRange.PP256 Pal$, 16, 200, No, Yes
Sleep 3000
PalGreySclRange.PP256 Pal$, 16, 200, No, No
Sleep 3000

Continues on next page.......

— 126 —

“Program Example #12” continued from last page........
'--- Now, we actually fade our custom PP256 palette into a full
' greyscale of it in a single pass, measuring just 72 milliseconds per
' fade-step, wait two seconds, and then we fade it right back to normal
' again using that same exact speed! ;*)

PalFadeToGreyScl.PP256 Pal$, 72, No
sleep 2000
PalFadeFromGreyScl.PP256 Pal$, 72, No

'--- Let's do it again, but this time, we fade to an entire *negative
' greyscale* of that custom PP256 palette and then back to normal
' again in just the next two passes, measuring at the same exact speed
' per fade-step.

PalFadeToGreyScl.PP256 Pal$, 72, Yes
sleep 2000
PalFadeFromGreyScl.PP256 Pal$, 72, Yes

'--- We repeat the "greyscale/negative greyscale"-based fades once more
' here, only this time, we use color entries 1-166 of our custom
' PP256 palette now, measuring only 17 milliseconds per fade-step.

PalFadeRangeToGreyScl.PP256 Pal$, 1, 166, 17, No
sleep 2000
PalFadeRangeFromGreyScl.PP256 Pal$, 1, 166, 17, No
PalFadeRangeToGreyScl.PP256 Pal$, 1, 166, 17, Yes
sleep 2000
PalFadeRangeFromGreyScl.PP256 Pal$, 1, 166, 17, Yes

Line (0, 0)-(319, 15), 8, BF
Color 15, 8
Locate 1, 1: ? "Now rotating around and around the"
Locate 2, 1: ? "greyscale version of this palette!!"

'--- Using the color entries 20-235 now, we rotate the greyscaled colors of
' that exact PP256 palette forward for a moment, and then backwards
' for that very same moment. Rather amazing, huh? ^_^

Rota = 0
DO
 PalGreySclRotate.PP256 Pal$, 20, 235, Rota, No
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 1200
Rota = 1200
DO
 PalGreySclRotate.PP256 Pal$, 20, 235, Rota, No
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Rota = 0
Line (0, 0)-(319, 15), 8, BF
Color 15, 8
Locate 1, 1: ? "Let's also do the same for the negative"
Locate 2, 1: ? "greyscale version of this palette!!!"

Continues on next page.......

— 127 —

“Program Example #12” *still* continued from last page........
'--- Same thing again, but this time rotating around and around the
' negative greyscale of our same PP256-based custom palette!!

DO
 PalGreySclRotate.PP256 Pal$, 20, 235, Rota, Yes
 sleep 5
 Rota = Rota + 1
LOOP until Rota >= 1200
Rota = 1200
DO
 PalGreySclRotate.PP256 Pal$, 20, 235, Rota, Yes
 sleep 5
 Rota = Rota - 1
LOOP until Rota <= 0
Line (0, 0)-(319, 15), 0, BF
Color 15, 0
Locate 1, 1: ? "Be seeing you again, and thank 'ya once"
Locate 2, 1: ? "more!! Splendid fortune to you all!!!"

'--- Finally, let's close this now by fading our custom PP256
' palette slowly but *all the way* out in only one pass, using
' just 63 milliseconds per fade-step! ;*)

FadeOut.PP256 Pal$, 63

'--- And now, all finished!! d=^-^=b !

— 128 —

 PalGreyFadeCtrl.PP256PalGreyFadeCtrl.PP256

Sub Description:
 Sub PalGreyFadeCtrl.PP256 (PP256PalFile$, FadeToGrey.Grade, NegaPalSwitch)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

FadeToGrey.Grade = the custom fade-in level between the specified custom palette and a greyscale version of that very same
palette.
(63 = fully faded in to the greyscale of PP256 palette; 0 = fully faded out to normal PP256 palette)

NegaPalSwitch = the operation of whether or not to set the custom fade-in level to *rather* fade between the specified custom
palette and a negative greyscale version of it. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and
the entire palette will become like that, otherwise this command just sets the custom fade-in level to fade
between that same specified palette and a normal greyscale version of it.

Notes on this Command:
With this command, you have FULL and free reign over all 64 of the fade levels between your
own custom PP256-based palette and a greyscaled version of it! Alternatively, you can control
those same fade levels between all the original colors of that very palette and an actual greyscale
negative of it!! Perfect for games and graphics demos in FB!!! ;*) !

— 129 —

 PalGreyRangeFadeCtrl.PP256PalGreyRangeFadeCtrl.PP256

Sub Description:
 Sub PalGreyRangeFadeCtrl.PP256 (PP256PalFile$, StartColor, EndColor,

FadeToGrey.Grade, NegaPalSwitch)

PP256PalFile$ = the filename for the custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

FadeToGrey.Grade = the custom fade-in level between the selected colors of the specified custom palette and a greyscale
version of that very same palette.
(63 = fully faded in to the greyscale of PP256 palette; 0 = fully faded out to normal PP256 palette)

NegaPalSwitch = the operation of whether or not to set the custom fade-in level to *rather* fade between the specified custom
palette and a negative greyscale version of it. Pass 1 or higher (or either “FBPM.True” or “Yes”) here, and
the selected order of colors will become like that, otherwise this command just sets the custom fade-in level
to fade between that same order of colors of that exact specified palette and a normal greyscale version of
them.

Notes on this Command:
Same entire drill as the previous command PalGreyFadeCtrl.PP256, except that you can actually
do any part of your custom PP256 palette rather instead of just all of it alone!!! ^_-=b !!

— 130 —

—————— PPALETTEALETTE C CROSSFADINGROSSFADING R ROUTINESOUTINES
Or, routines to cause your palettes to fade between each other, leaving you drag-out speechless!!

NOTE: These next routines support crossfading only between the following:
a 256-color GFXlib 2 palette —— 768-byte palette.

When these following commands are applied in your FB programs, the colors can automatically
change to the crossfading-based shades of the default 256-color GFXlib 2 palette and/or a
custom 768-byte palette, so please be *very* careful if you are using any custom 256-color
palette(s) of your own choice! ;*) !

 CrossFade.Default_to_768PalCrossFade.Default_to_768Pal

Sub Description:
 Sub CrossFade.Default_to_768Pal (PalFile$, millisec)

PalFile$ = the filename for your custom 256-color palette (.pal) to fade to. Must be only 768 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the default GFXlib 2 palette all the way to the
specified custom palette.

Notes on this Command:
This command — once it is used properly — will actually let you fade the entire screen from the
default 256-color GFXlib 2 palette all the way to your own custom 768-byte palette of your
choice, all in *any* speed that you want, all in ONE single pass!!! ^_^=b Remember, higher
milliseconds determine slower fades, while lower milliseconds constitute more and more faster
fades.

— 131 —

 CrossFade.768Pal_to_DefaultCrossFade.768Pal_to_Default

Sub Description:
 Sub CrossFade.768Pal_to_Default (PalFile$, millisec)

PalFile$ = the filename for your custom 256-color palette (.pal) to fade from. Must be only 768 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the specified custom palette all the way back to the
default GFXlib 2 palette.

Notes on this Command:
Same exact features as CrossFade.Default_to_768Pal, *except* that it rather lets you fade the
entire screen from your own custom 768-byte palette right back to the default 256-color GFXlib 2
palette in its entirety, all in ONE single pass!!! ;*) Again folks, higher milliseconds determine
slower fades, while lower milliseconds constitute more and more faster fades.

— 132 —

 CrossFadeRange.Default_to_768PalCrossFadeRange.Default_to_768Pal

Sub Description:
 Sub CrossFadeRange.Default_to_768Pal (StartColor, EndColor, PalFile$,

millisec)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

PalFile$ = the filename for your custom 256-color palette (.pal) to fade to. Must be only 768 bytes, please!

millisec = the amount of milliseconds determining the speed of fading the selected order of colors from the default GFXlib 2
palette all the way to the specified custom palette.

Notes on this Command:
This command — once it is used properly — will actually let you fade the color-order range within
your screen from the default 256-color GFXlib 2 palette all the way to your own custom 768-byte
palette of your choice, all in *any* speed that you want, all in ONE single pass!!! ^_-=b !
Remember, higher milliseconds determine slower fades, while lower milliseconds constitute more
and more faster fades.

— 133 —

 CrossFadeRange.768Pal_to_DefaultCrossFadeRange.768Pal_to_Default

Sub Description:
 Sub CrossFadeRange.768Pal_to_Default (StartColor, EndColor, PalFile$,

millisec)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

PalFile$ = the filename for your custom 256-color palette (.pal) to fade from. Must be only 768 bytes, please!

millisec = the amount of milliseconds determining the speed of fading the selected order of colors from the specified custom
palette all the way back to the default GFXlib 2 palette.

Notes on this Command:
Same exact features as CrossFadeRange.Default_to_768Pal, *except* that it rather lets you fade
the color-order range within your screen from your own custom 768-byte palette right back to the
default 256-color GFXlib 2 palette in its entirety, all in ONE single pass!!! ;*) Once more, higher
milliseconds = slower fades; while lower milliseconds = faster fades.

— 134 —

 CrossFadeCtrl.Default_to_768PalCrossFadeCtrl.Default_to_768Pal

Sub Description:
 Sub CrossFadeCtrl.Default_to_768Pal (FadeTo768Pal.Grade, PalFile$)

FadeTo768Pal.Grade = the custom fade-in level between the default GFXlib 2 palette and the custom 768-byte palette that
you choose from the “PalFile$” setting within this very command.
(63 = fully faded in to 768-byte palette; 0 = fully faded out to default GFXlib 2 palette)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

Notes on this Command:
With this command, you have FULL and free reign over all 64 of the fade levels between the
default GFXlib 2 palette and your own custom 768-byte palette!!! Perfect for games and graphics
demos in FB, as well as for creating some real mind-bending palette effects, too!!! d=^_^=b !!

— 135 —

 CrossFadeRangeCtrl.Default_to_768PalCrossFadeRangeCtrl.Default_to_768Pal

Sub Description:
 Sub CrossFadeRangeCtrl.Default_to_768Pal (StartColor, EndColor,

FadeTo768Pal.Grade, PalFile$)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

FadeTo768Pal.Grade = the custom fade-in level between the selected order of colors from the default GFXlib 2 palette and
that very same color order from the custom 768-byte palette that you choose using the “PalFile$”
setting within this very command.
(63 = fully faded in to 768-byte palette; 0 = fully faded out to default GFXlib 2 palette)

PalFile$ = the filename for the custom 256-color palette (.pal) of your choice. Must be only 768 bytes, please!

Notes on this Command:
Same great features as CrossFadeCtrl.Default_to_768Pal, except that you can REALLY fade any
color range you want between the default GFXlib 2 palette and your own custom 768-byte
palette!!! Grandly awesome stuff for games and graphics demos in FB, as well as for creating
some real mind-bending palette effects, too!!! d=^_^=b !!

Please turn to the very next page for an FB program example of this using the commands
CrossFade.Default_to_768Pal, CrossFade.768Pal_to_Default,
CrossFadeRange.Default_to_768Pal, CrossFadeRange.768Pal_to_Default,
CrossFadeCtrl.Default_to_768Pal, and CrossFadeRangeCtrl.Default_to_768Pal!!

— 136 —

Program Example # 13 :
(This example uses CrossFade.Default_to_768Pal, CrossFade.768Pal_to_Default, CrossFadeRange.Default_to_768Pal,
CrossFadeRange.768Pal_to_Default, CrossFadeCtrl.Default_to_768Pal, and CrossFadeRangeCtrl.Default_to_768Pal.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we draw up the 256 color entries for the default GFXlib 2 palette.
'--
For DrawPalette = 0 to 255
 Line (DrawPalette, 8)-(DrawPalette, 200), DrawPalette
Next

'Then, we add our own custom 256 color palette that has only 768 bytes in
'it! ;*)
'--
Pal$ = "CustomPalette_01.pal" '<--- This is a 768-byte custom palette that
 ' we are gonna be using for this test!

'Now, let's AMAZE some people with some brain-boggling palette crossfades
'between the default GFXlib 2 palette and our custom 768-byte one right
'here!!! ^_- !
'--

Line (0, 0)-(319, 15), 6, BF
Color 15, 6
Locate 1, 1: ? "Now crossfading between the GFXlib 2"
Locate 2, 1: ? "palette and a custom 768-byte palette!!"
sleep 3000

'--- First off, let's fade the default GFXlib 2 palette all the way into
' that custom 768-byte palette in one pass, using only 32 milliseconds
' per fade-step! And then, we wait two seconds before we fade the
' palette back to normal again at the same exact speed. Then we wait
' two more seconds. ;*)

CrossFade.Default_to_768Pal Pal$, 32
sleep 2000
CrossFade.768Pal_to_Default Pal$, 32
sleep 2000

'--- Now let's do it all again, but this time, using color entries 40-156
' and just 15 milliseconds per fade-step!

CrossFadeRange.Default_to_768Pal 40, 156, Pal$, 15
sleep 2000
CrossFadeRange.768Pal_to_Default 40, 156, Pal$, 15
sleep 2000

Continues on next page.......

— 137 —

“Program Example #13” continued from last page........
'--- Here comes the fun part: we crossfade the same palettes to and fro
' *while* we draw the lines on the screen, using the command
' "CrossFadeCtrl.Default_to_768Pal"!!! :D !

Line (0, 0)-(319, 15), 6, BF
Color 15, 6
Locate 1, 1: ? "Now let's draw some lines while we"
Locate 2, 1: ? "crossfade between the same palettes!!"
For Fade = 0 to 63
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
 CrossFadeCtrl.Default_to_768Pal Fade, Pal$
Next
For ExtraLines = 0 to 80
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
Next
For Fade = 0 to 63
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
 CrossFadeCtrl.Default_to_768Pal 63 - Fade, Pal$
Next
For ExtraLines = 0 to 80
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
Next

'--- Let us do that again, but this time, using the command
' "CrossFadeRangeCtrl.Default_to_768Pal" to fade color entries 100-250
' between the GFXlib 2 default palette and our 768-byte palette!!!
' ^_-=b !

For Fade = 0 to 63
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
 CrossFadeRangeCtrl.Default_to_768Pal 100, 250, Fade, Pal$
Next
For ExtraLines = 0 to 80
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
Next
For Fade = 0 to 63
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
 CrossFadeRangeCtrl.Default_to_768Pal 100, 250, 63 - Fade, Pal$
Next
For ExtraLines = 0 to 80
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
Next
Line (0, 0)-(319, 15), 0, BF
Color 15, 0
Locate 1, 1: ? "Be seeing you again now, and I thank"
Locate 2, 1: ? "you so much here for watching!!!"

'--- Finally, let's wrap it up as always by fading the ENTIRE default
' GFXlib 2 palette slowly but *all the way* out in only one pass,
' using just 63 milliseconds per fade-step! ;*)

FadeOut.DefaultPal 63

'--- Chao!!! ^-^ !

— 138 —

NOTE: These next routines support crossfading only between the following:
a 768-byte palette —— another 768-byte palette.

When these following commands are applied in your FB programs, the colors can automatically
change to the crossfading-based shades of one or even TWO custom 768-byte palette(s) that you
choose, so please be *very* careful if you are using any custom 256-color palette(s) of your own
choice! ;*) !

 CrossFade.768Pal_to_768PalCrossFade.768Pal_to_768Pal

Sub Description:
 Sub CrossFade.768Pal_to_768Pal (PalFile.from$, PalFile.to$, millisec)

PalFile.from$ = the filename for your first custom 256-color palette (.pal) to fade from. Must be only 768 bytes, please!

PalFile.to$ = the filename for your second custom 256-color palette (.pal) to fade to. Must also be only 768 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the first specified custom palette all the way to the
second specified custom palette.

Notes on this Command:
This command — once it is used properly — will actually let you fade the entire screen from the
first 768-byte custom palette right into the second 768-byte custom palette, all in *any* speed that
you want, all in ONE single pass!!! ^_^=b Remember, higher milliseconds determine slower
fades, while lower milliseconds constitute more and more faster fades.

— 139 —

 CrossFadeRange.768Pal_to_768PalCrossFadeRange.768Pal_to_768Pal

Sub Description:
 Sub CrossFadeRange.768Pal_to_768Pal (StartColor, EndColor, PalFile.from$,

PalFile.to$, millisec)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

PalFile.from$ = the filename for your first custom 256-color palette (.pal) to fade from. Must be only 768 bytes, please!

PalFile.to$ = the filename for your second custom 256-color palette (.pal) to fade to. Must also be only 768 bytes, please!

millisec = the amount of milliseconds determining the speed of fading the selected order of colors from the first specified
custom palette all the way to the second specified custom palette.

Notes on this Command:
Same thing as CrossFade.768Pal_to_768Pal, *except* that it rather lets you fade the color-order
range within your screen from your first custom 768-byte palette to your second custom 768-byte
palette in its entirety, all in ONE single pass!!! ;*) Again, higher milliseconds = slower fades;
while lower milliseconds = faster fades.

— 140 —

 CrossFadeCtrl.768Pal_to_768PalCrossFadeCtrl.768Pal_to_768Pal

Sub Description:
 Sub CrossFadeCtrl.768Pal_to_768Pal (FadeTo2nd768Pal.Grade, PalFile.from$,

PalFile.to$)

FadeTo2nd768Pal.Grade = the custom fade-in level between your first selectable custom 768-byte palette and your second
selectable custom 768-byte palette.
(63 = fully faded in to second 768-byte palette; 0 = fully faded out to first 768-byte palette)

PalFile.from$ = the filename for your first custom 256-color palette (.pal) to fade from. Must be only 768 bytes, please!

PalFile.to$ = the filename for your second custom 256-color palette (.pal) to fade to. Must also be only 768 bytes, please!

Notes on this Command:
With this command, you have FULL and free reign over all 64 of the fade levels between your first
selectable custom 768-byte palette and your second selectable custom 768-byte palette!!! Wow!!
It is such wildly excellent stuff for games and graphics demos in FB, as well as for creating some
real mind-bending palette effects, too!!! :D !

— 141 —

 CrossFadeRangeCtrl.768Pal_to_768PalCrossFadeRangeCtrl.768Pal_to_768Pal

Sub Description:
 Sub CrossFadeRangeCtrl.768Pal_to_768Pal (StartColor, EndColor,

FadeTo2nd768Pal.Grade, PalFile.from$, PalFile.to$)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

FadeTo2nd768Pal.Grade = the custom fade-in level between the selected order of colors from your first selectable custom
768-byte palette and that very same color order from your second selectable custom 768-byte
palette.
(63 = fully faded in to second 768-byte palette; 0 = fully faded out to first 768-byte palette)

PalFile.from$ = the filename for your first custom 256-color palette (.pal) to fade from. Must be only 768 bytes, please!

PalFile.to$ = the filename for your second custom 256-color palette (.pal) to fade to. Must also be only 768 bytes, please!

Notes on this Command:
Same great features as CrossFadeCtrl.768Pal_to_768Pal, except that you can REALLY fade any
color range you want between your first selectable custom 768-byte palette and your second
selectable custom 768-byte palette!!! Richly spectactular stuff for your games and graphics
demos in FB, as well as for creating some real mind-bending palette effects, too!!! d=^_^=b !!

Please turn to the very next page for an FB program example of this using the commands
CrossFade.768Pal_to_768Pal, CrossFadeRange.768Pal_to_768Pal,
CrossFadeCtrl.768Pal_to_768Pal, and CrossFadeRangeCtrl.768Pal_to_768Pal!!

— 142 —

Program Example # 14 :
(This example uses CrossFade.768Pal_to_768Pal, CrossFadeRange.768Pal_to_768Pal, CrossFadeCtrl.768Pal_to_768Pal, and
CrossFadeRangeCtrl.768Pal_to_768Pal.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we get in our TWO custom 768-byte palettes for use at once, and then
'draw up the 256 color entries for this dynamic duo!! ^_^=b !
'--
Pal.1$ = "CustomPalette_01.pal" '<--- This is our FIRST custom 768 palette
 ' that we will bring out here!!

Pal.2$ = "CustomPalette_02.pal" '<--- This is our SECOND custom 768 palette
 ' that we will bring out here, also!!

LoadUp768Pal Pal.1$ '<--- Now loading custom palette #1!

For DrawPalette = 0 to 255
 Line (DrawPalette, 16)-(DrawPalette, 200), DrawPalette
Next

'Right here, let's blow 'em away in such WONDROUS AWE with some wildly
'awesome palette crossfades between our two custom 768-byte palettes,
'starting now!!! ^_- !
'--

Line (0, 0)-(319, 15), 6, BF
Color 15, 6
Locate 1, 1: ? "Now, let's crossfade between our TWO"
Locate 2, 1: ? "custom 768-byte palettes at once!!!"
sleep 3000

'--- First off, let's fade the first custom 768-byte palette all the way
' into our second one here in just one pass, using only 41 milliseconds
' per fade-step! And then, we wait two seconds before we fade the
' palette back our first again at the same exact speed. Then we wait
' two more seconds. ;*)

CrossFade.768Pal_to_768Pal Pal.1$, Pal.2$, 41
sleep 2000
CrossFade.768Pal_to_768Pal Pal.2$, Pal.1$, 41
sleep 2000

'--- Now let's do it all again, but this time, using color entries 40-156
' and just 22 milliseconds per fade-step!

CrossFadeRange.768Pal_to_768Pal 40, 156, Pal.1$, Pal.2$, 22
sleep 2000
CrossFadeRange.768Pal_to_768Pal 40, 156, Pal.2$, Pal.1$, 22
sleep 2000

Continues on next page.......

— 143 —

“Program Example #14” continued from last page........
'--- Here comes the rockin' part: we crossfade the same palettes to and
' fro *while* we draw the lines on the screen, using the command
' "CrossFadeCtrl.768Pal_to_768Pal"!!! :D !

Line (0, 0)-(319, 15), 6, BF
Color 15, 6
Locate 1, 1: ? "Now let's draw some lines while we"
Locate 2, 1: ? "crossfade between the same palettes!!"
For Fade = 0 to 63
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
 CrossFadeCtrl.768Pal_to_768Pal Fade, Pal.1$, Pal.2$
Next
For ExtraLines = 0 to 80
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
Next
For Fade = 0 to 63
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
 CrossFadeCtrl.768Pal_to_768Pal 63 - Fade, Pal.1$, Pal.2$
Next
For ExtraLines = 0 to 80
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
Next

'--- Let us do that again, but this time, using the command
' "CrossFadeRangeCtrl.768Pal_to_768Pal" to fade color entries 100-250
' between our first 768-byte palette and our second!!! ^_-=b !

For Fade = 0 to 63
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
 CrossFadeRangeCtrl.768Pal_to_768Pal 100, 250, Fade, Pal.1$, Pal.2$
Next
For ExtraLines = 0 to 80
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
Next
For Fade = 0 to 63
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
 CrossFadeRangeCtrl.768Pal_to_768Pal 100, 250, 63 - Fade, Pal.1$, Pal.2$
Next
For ExtraLines = 0 to 80
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
Next
Line (0, 0)-(319, 15), 0, BF
Color 15, 0
Locate 1, 1: ? "Thanks so rather much for tuning in."
Locate 2, 1: ? "God bless you all and good night!!!"

'--- Finally, let's wrap it up as always by fading our first 768-byte
' palette slowly but *all the way* out in only one pass, using just 63
' milliseconds per fade-step! ;*)

FadeOut.768Pal Pal.1$, 63

'--- Sayanora, ladies and gentlemen!!! ^-^ !

— 144 —

NOTE: These next routines support crossfading only between the following:
a PP256 palette —— another PP256 palette.

When these following commands are applied in your FB programs, the colors can automatically
change to the crossfading-based shades of one or even TWO custom PixelPlus 256 (or PP256)
palette(s) that you choose, so please be *very* careful if you are using any custom 256-color
palette(s) of your own choice! ;*) !

 CrossFade.PP256_to_PP256CrossFade.PP256_to_PP256

Sub Description:
 Sub CrossFade.PP256_to_PP256 (PP256PalFile.from$, PP256PalFile.to$,

millisec)

PP256PalFile.from$ = the filename for your first custom PP256-based palette (.pal) to fade from. Must be only 1,024
bytes, please!

PP256PalFile.to$ = the filename for your second custom PP256-based palette (.pal) to fade to. Must also be only 1,024
bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the first specified custom palette all the way to the
second specified custom palette.

Notes on this Command:
This command — once it is used properly — will actually let you fade the entire screen from the
first PP256-based custom palette right into the second PP256-based custom palette, all in *any*
speed that you want, all in ONE single pass!!! ^_^=b Remember, higher milliseconds
determine slower fades, while lower milliseconds constitute more and more faster fades.

— 145 —

 CrossFadeRange.PP256_to_PP256CrossFadeRange.PP256_to_PP256

Sub Description:
 Sub CrossFadeRange.PP256_to_PP256 (StartColor, EndColor,

PP256PalFile.from$, PP256PalFile.to$, millisec)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

PP256PalFile.from$ = the filename for your first custom PP256-based palette (.pal) to fade from. Must be only 1,024
bytes, please!

PP256PalFile.to$ = the filename for your second custom PP256-based palette (.pal) to fade to. Must also be only 1,024
bytes, please!

millisec = the amount of milliseconds determining the speed of fading the selected order of colors from the first specified
custom palette all the way to the second specified custom palette.

Notes on this Command:
Same thing as CrossFade.PP256_to_PP256, *except* that it rather lets you fade the color-order
range within your screen from your first custom PP256 palette to your second custom PP256
palette in its entirety, all in ONE single pass!!! ;*) Again, higher milliseconds = slower fades;
while lower milliseconds = faster fades.

— 146 —

 CrossFadeCtrl.PP256_to_PP256CrossFadeCtrl.PP256_to_PP256

Sub Description:
 Sub CrossFadeCtrl.PP256_to_PP256 (FadeTo2ndPP256Pal.Grade,

PP256PalFile.from$, PP256PalFile.to$)

FadeTo2ndPP256Pal.Grade = the custom fade-in level between your first selectable custom PP256 palette and your
second selectable custom PP256 palette.
(63 = fully faded in to second PP256 palette; 0 = fully faded out to first PP256 palette)

PP256PalFile.from$ = the filename for your first custom PP256-based palette (.pal) to fade from. Must be only 1,024
bytes, please!

PP256PalFile.to$ = the filename for your second custom PP256-based palette (.pal) to fade to. Must also be only 1,024
bytes, please!

Notes on this Command:
With this command, you have FULL and free reign over all 64 of the fade levels between your first
selectable custom PP256-based palette and your second selectable custom PP256-based
palette!!! Wow!! It is such wildly excellent stuff for games and graphics demos in FB, as well as
for creating some real mind-bending palette effects, too!!! :D !

— 147 —

 CrossFadeRangeCtrl.PP256_to_PP256CrossFadeRangeCtrl.PP256_to_PP256

Sub Description:
 Sub CrossFadeRangeCtrl.PP256_to_PP256 (StartColor, EndColor,

FadeTo2ndPP256Pal.Grade, PP256PalFile.from$, PP256PalFile.to$)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

FadeTo2ndPP256Pal.Grade = the custom fade-in level between the selected order of colors from your first selectable
custom PP256 palette and that very same color order from your second selectable custom
PP256 palette.
(63 = fully faded in to second PP256 palette; 0 = fully faded out to first PP256 palette)

PP256PalFile.from$ = the filename for your first custom PP256-based palette (.pal) to fade from. Must be only 1,024
bytes, please!

PP256PalFile.to$ = the filename for your second custom PP256-based palette (.pal) to fade to. Must also be only 1,024
bytes, please!

Notes on this Command:
Same great features as CrossFadeCtrl.PP256_to_PP256, except that you can REALLY fade any
color range you want between your first selectable custom PP256 palette and your second
selectable custom PP256 palette!!! Richly spectactular stuff for your games and graphics
demos in FB, as well as for creating some real mind-bending palette effects, too!!! d=^_^=b !!

Please turn to the very next page for an FB program example of this using the commands
CrossFade.PP256_to_PP256, CrossFadeRange.PP256_to_PP256,
CrossFadeCtrl.PP256_to_PP256, and CrossFadeRangeCtrl.PP256_to_PP256!!

— 148 —

Program Example # 15 :
(This example uses CrossFade.PP256_to_PP256, CrossFadeRange.PP256_to_PP256, CrossFadeCtrl.PP256_to_PP256, and
CrossFadeRangeCtrl.PP256_to_PP256.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we get in our TWO custom PP256 palettes for use at once, and then
'draw up the 256 color entries for this couple of them!! ^_^=b !
'--
Pal.1$ = "PP256Pal1.pal" '<--- This is our FIRST custom PP256 palette that
 ' we will bring out here!!

Pal.2$ = "PP256Pal2.pal" '<--- This is our SECOND custom PP256 palette that
 ' we will bring out here, also!!

LoadUpPP256Pal Pal.1$ '<--- Now loading custom palette #1!

For DrawPalette = 0 to 255
 Line (DrawPalette, 16)-(DrawPalette, 200), DrawPalette
Next

'Right here, let's intensely wow 'em like wildfire with some truly
'awesome palette crossfades between our two custom PP256-based palettes,
'starting now!!! ^_- !
'--

Line (0, 0)-(319, 15), 6, BF
Color 15, 6
Locate 1, 1: ? "Now, let's crossfade between our TWO"
Locate 2, 1: ? "custom PP256-based palettes at once!!!"
sleep 3000

'--- First off, let's fade the first custom PP256 palette all the way
' into our second one here in just one pass, using only 36 milliseconds
' per fade-step! And then, we wait two seconds before we fade the
' palette back our first again at the same exact speed. Then we wait
' two more seconds. ;*)

CrossFade.PP256_to_PP256 Pal.1$, Pal.2$, 36
sleep 2000
CrossFade.PP256_to_PP256 Pal.2$, Pal.1$, 36
sleep 2000

'--- Now let's do it all again, but this time, using color entries 40-156
' and just 18 milliseconds per fade-step!

CrossFadeRange.PP256_to_PP256 40, 156, Pal.1$, Pal.2$, 18
sleep 2000
CrossFadeRange.PP256_to_PP256 40, 156, Pal.2$, Pal.1$, 18
sleep 2000

Continues on next page.......

— 149 —

“Program Example #15” continued from last page........
'--- Here comes the best part: we crossfade the same palettes to and
' fro *while* we draw some pixels on the screen, using the command
' "CrossFadeCtrl.PP256_to_PP256"!!! :D !

Line (0, 0)-(319, 15), 6, BF
Color 15, 6
Locate 1, 1: ? "Now let's draw some circles while we"
Locate 2, 1: ? "crossfade between the same palettes!!"
For Fade = 0 to 63
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
 CrossFadeCtrl.PP256_to_PP256 Fade, Pal.1$, Pal.2$
Next
For ExtraLines = 0 to 80
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
Next
For Fade = 0 to 63
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
 CrossFadeCtrl.PP256_to_PP256 63 - Fade, Pal.1$, Pal.2$
Next
For ExtraLines = 0 to 80
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
Next

'--- Let us do that again, but this time, using the command
' "CrossFadeRangeCtrl.PP256_to_PP256" to fade color entries 100-250
' between our first PP256-based palette and our second!!! ^_-=b !

For Fade = 0 to 63
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
 CrossFadeRangeCtrl.PP256_to_PP256 100, 250, Fade, Pal.1$, Pal.2$
Next
For ExtraLines = 0 to 80
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
Next
For Fade = 0 to 63
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
 CrossFadeRangeCtrl.PP256_to_PP256 100, 250, 63 - Fade, Pal.1$, Pal.2$
Next
For ExtraLines = 0 to 80
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
Next
Line (0, 0)-(319, 15), 0, BF
Color 15, 0
Locate 1, 1: ? "Be seeing you all real soon, and I thank"
Locate 2, 1: ? "you for such a wonderful time!! Chao!!!"

'--- Finally, let's wrap it up as always by fading our first PP256-based
' palette slowly but *all the way* out in only one pass, using just 63
' milliseconds per fade-step! ;*)

FadeOut.PP256 Pal.1$, 63

'--- Later!!! ^^ !

— 150 —

NOTE: These next routines support crossfading only between the following:
a 256-color GFXlib 2 palette —— PP256 palette.

When these following commands are applied in your FB programs, the colors can automatically
change to the crossfading-based shades of the default 256-color GFXlib 2 palette and/or a
custom PixelPlus 256 (or PP256) palette, so please be *very* careful if you are using any custom
256-color palette(s) of your own choice! ;*) !

 CrossFade.Default_to_PP256CrossFade.Default_to_PP256

Sub Description:
 Sub CrossFade.Default_to_PP256 (PP256PalFile$, millisec)

PP256PalFile$ = the filename for your custom PP256-based palette (.pal) to fade to. Must be only 1,024 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the default GFXlib 2 palette all the way to the
specified custom palette.

Notes on this Command:
This command — once it is used properly — will actually let you fade the entire screen from the
default 256-color GFXlib 2 palette all the way to your own custom PP256-based palette of your
choice, all in *any* speed that you want, all in ONE single pass!!! ^_^=b Remember, higher
milliseconds determine slower fades, while lower milliseconds constitute more and more faster
fades.

— 151 —

 CrossFade.PP256_to_DefaultCrossFade.PP256_to_Default

Sub Description:
 Sub CrossFade.PP256_to_Default (PP256PalFile$, millisec)

PP256PalFile$ = the filename for your custom PP256-based palette (.pal) to fade from. Must be only 1,024 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the specified custom palette all the way back to the
default GFXlib 2 palette.

Notes on this Command:
Same exact features as CrossFade.Default_to_PP256, *except* that it rather lets you fade the
entire screen from your own custom PP256 palette right back to the default 256-color GFXlib 2
palette in its entirety, all in ONE single pass!!! ;*) Again folks, higher milliseconds determine
slower fades, while lower milliseconds constitute more and more faster fades.

— 152 —

 CrossFadeRange.Default_to_PP256CrossFadeRange.Default_to_PP256

Sub Description:
 Sub CrossFadeRange.Default_to_PP256 (StartColor, EndColor, PP256PalFile$,

millisec)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

PP256PalFile$ = the filename for your custom PP256-based palette (.pal) to fade to. Must be only 1,024 bytes, please!

millisec = the amount of milliseconds determining the speed of fading the selected order of colors from the default GFXlib 2
palette all the way to the specified custom palette.

Notes on this Command:
This command — once it is used properly — will actually let you fade the color-order range within
your screen from the default 256-color GFXlib 2 palette all the way to your own custom PP256
palette of your choice, all in *any* speed that you want, all in ONE single pass!!! ^_-=b !
Remember, higher milliseconds determine slower fades, while lower milliseconds constitute more
and more faster fades.

— 153 —

 CrossFadeRange.PP256_to_DefaultCrossFadeRange.PP256_to_Default

Sub Description:
 Sub CrossFadeRange.PP256_to_Default (StartColor, EndColor, PP256PalFile$,

millisec)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

PP256PalFile$ = the filename for your custom PP256-based palette (.pal) to fade from. Must be only 1,024 bytes, please!

millisec = the amount of milliseconds determining the speed of fading the selected order of colors from the specified custom
palette all the way back to the default GFXlib 2 palette.

Notes on this Command:
Same exact features as CrossFadeRange.Default_to_PP256, *except* that it rather lets you fade
the color-order range within your screen from your own custom PP256 palette right back to the
default 256-color GFXlib 2 palette in its entirety, all in ONE single pass!!! ;*) Once more, higher
milliseconds = slower fades; while lower milliseconds = faster fades.

— 154 —

 CrossFadeCtrl.Default_to_PP256CrossFadeCtrl.Default_to_PP256

Sub Description:
 Sub CrossFadeCtrl.Default_to_PP256 (FadeToPP256Pal.Grade, PP256PalFile$)

FadeToPP256Pal.Grade = the custom fade-in level between the default GFXlib 2 palette and the custom PP256 palette that
you choose from the “PP256PalFile$” setting within this very command.
(63 = fully faded in to PP256 palette; 0 = fully faded out to default GFXlib 2 palette)

PP256PalFile$ = the filename for your custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

Notes on this Command:
With this command, you have FULL and free reign over all 64 of the fade levels between the
default GFXlib 2 palette and your own PP256-based custom palette!!! Perfect for games and
graphics demos in FB, as well as for creating some real mind-bending palette effects, too!!!
d=^_^=b !!

— 155 —

 CrossFadeRangeCtrl.Default_to_PP256CrossFadeRangeCtrl.Default_to_PP256

Sub Description:
 Sub CrossFadeRangeCtrl.Default_to_PP256 (StartColor, EndColor,

FadeToPP256Pal.Grade, PP256PalFile$)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

FadeToPP256Pal.Grade = the custom fade-in level between the selected order of colors from the default GFXlib 2 palette
and that very same color order from the custom PP256 palette that you choose from the
“PP256PalFile$” setting within this very command.
(63 = fully faded in to PP256 palette; 0 = fully faded out to default GFXlib 2 palette)

PP256PalFile$ = the filename for your custom PP256-based palette (.pal) of your choice. Must be only 1,024 bytes, please!

Notes on this Command:
Same great features as CrossFadeCtrl.Default_to_PP256, except that you can REALLY fade any
color range you want between the default GFXlib 2 palette and your own custom PP256 palette!!!
Grandly awesome stuff for games and graphics demos in FB, as well as for creating some real
mind-bending palette effects, too!!! d=^_^=b !!

Please turn to the very next page for an FB program example of this using the commands
CrossFade.Default_to_PP256, CrossFade.PP256_to_Default,
CrossFadeRange.Default_to_PP256, CrossFadeRange.PP256_to_Default,
CrossFadeCtrl.Default_to_PP256, and CrossFadeRangeCtrl.Default_to_PP256!!

— 156 —

Program Example # 16 :
(This example uses CrossFade.Default_to_PP256, CrossFade.PP256_to_Default, CrossFadeRange.Default_to_PP256,
CrossFadeRange.PP256_to_Default, CrossFadeCtrl.Default_to_PP256, and CrossFadeRangeCtrl.Default_to_PP256.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Next, we draw up the 256 color entries for the default GFXlib 2 palette.
'--
For DrawPalette = 0 to 255
 Line (DrawPalette, 8)-(DrawPalette, 200), DrawPalette
Next

'Then, we add our own custom PP256-based palette that has only 1,024
'bytes in it! ;*)
'--
Pal$ = "PP256Pal1.pal" '<--- This is a PP256-based custom palette that we
 ' are gonna be using for this test!

'Now, prepare to be dazzled with some brain-boggling palette crossfades
'between the default GFXlib 2 palette and our custom PP256-based one right
'here!!! ^_- !
'--

Line (0, 0)-(319, 15), 6, BF
Color 15, 6
Locate 1, 1: ? "Now crossfading between the GFXlib 2"
Locate 2, 1: ? "palette and our custom PP256 palette!!"
sleep 3000

'--- First off, let's fade the default GFXlib 2 palette all the way into
' that custom PP256 palette in one pass, using only 48 milliseconds per
' fade-step! And then, we wait two seconds before we fade the palette
' back to normal again at the same exact speed. Then we wait two more
' seconds. ;*)

CrossFade.Default_to_PP256 Pal$, 48
sleep 2000
CrossFade.PP256_to_Default Pal$, 48
sleep 2000

'--- Now let's do it all again, but this time, using color entries 57-181
' and just 25 milliseconds per fade-step!

CrossFadeRange.Default_to_PP256 57, 181, Pal$, 25
sleep 2000
CrossFadeRange.PP256_to_Default 57, 181, Pal$, 25
sleep 2000

Continues on next page.......

— 157 —

“Program Example #16” continued from last page........
'--- Here comes the exciting part: we crossfade the same palettes to and
' fro *while* we draw the circles on the screen, using the command
' "CrossFadeCtrl.Default_to_PP256"!!! :D !

Line (0, 0)-(319, 15), 6, BF
Color 15, 6
Locate 1, 1: ? "Now let's draw some circles while we"
Locate 2, 1: ? "crossfade between the same palettes!!"
For Fade = 0 to 63
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
 CrossFadeCtrl.Default_to_PP256 Fade, Pal$
Next
For ExtraLines = 0 to 80
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
Next
For Fade = 0 to 63
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
 CrossFadeCtrl.Default_to_PP256 63 - Fade, Pal$
Next
For ExtraLines = 0 to 80
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
Next

'--- Let us do that again, but this time, using the command
' "CrossFadeRangeCtrl.Default_to_PP256" to fade color entries 80-234
' between the GFXlib 2 default palette and our PP256-based palette!!!
' ^_-=b !

For Fade = 0 to 63
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
 CrossFadeRangeCtrl.Default_to_PP256 80, 234, Fade, Pal$
Next
For ExtraLines = 0 to 80
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
Next
For Fade = 0 to 63
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
 CrossFadeRangeCtrl.Default_to_PP256 80, 234, 63 - Fade, Pal$
Next
For ExtraLines = 0 to 80
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
Next
Line (0, 0)-(319, 15), 0, BF
Color 15, 0
Locate 1, 1: ? "It is such a pleasure of you to check"
Locate 2, 1: ? "this one out!! Thank you, and chao!!!"

'--- Finally, let's end this as always by fading the ENTIRE default
' GFXlib 2 palette slowly but *all the way* out in only one pass,
' using just 63 milliseconds per fade-step! ;*)

FadeOut.DefaultPal 63

'--- See 'ya now!!! ^_- !

— 158 —

NOTE: These next routines support crossfading only between the following:
a 768-byte palette —— PP256 palette.

When these following commands are applied in your FB programs, the colors can automatically
change to the crossfading-based shades of a 768-byte palette and/or a custom PixelPlus 256 (or
PP256) palette, so please be *very* careful if you are using any custom 256-color palette(s) of
your own choice! ;*) !

 CrossFade.768Pal_to_PP256CrossFade.768Pal_to_PP256

Sub Description:
 Sub CrossFade.768Pal_to_PP256 (PalFile$, PP256PalFile$, millisec)

PalFile$ = the filename for your custom 256-color palette (.pal) to fade from. Must be only 768 bytes, please!

PP256PalFile$ = the filename for your custom PP256-based palette (.pal) to fade to. Must be only 1,024 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the specified custom 768-byte palette all the way to
the specified PP256 custom palette.

Notes on this Command:
This command — once it is used properly — will actually let you fade the entire screen from your
custom 768-byte palette all the way to your own custom PP256-based palette of your choice, all
in *any* speed that you want, all in ONE single pass!!! ^_^=b Remember, higher milliseconds
determine slower fades, while lower milliseconds constitute more and more faster fades.

— 159 —

 CrossFade.PP256_to_768PalCrossFade.PP256_to_768Pal

Sub Description:
 Sub CrossFade.PP256_to_768Pal (PP256PalFile$, PalFile$, millisec)

PP256PalFile$ = the filename for your custom PP256-based palette (.pal) to fade from. Must be only 1,024 bytes, please!

PalFile$ = the filename for your custom 256-color palette (.pal) to fade to. Must be only 768 bytes, please!

millisec = the amount of milliseconds determining the speed of fading from the specified PP256 custom palette all the way to
the specified custom 768-byte palette.

Notes on this Command:
Same exact features as CrossFade.768Pal_to_PP256, *except* that it rather lets you fade the
entire screen from your own custom PP256 palette right back to your custom 768-byte palette in
its entirety, all in ONE single pass!!! ;*) Again folks, higher milliseconds determine slower fades,
while lower milliseconds constitute more and more faster fades.

— 160 —

 CrossFadeRange.768Pal_to_PP256CrossFadeRange.768Pal_to_PP256

Sub Description:
 Sub CrossFadeRange.768Pal_to_PP256 (StartColor, EndColor, PalFile$,

PP256PalFile$, millisec)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

PalFile$ = the filename for your custom 256-color palette (.pal) to fade from. Must be only 768 bytes, please!

PP256PalFile$ = the filename for your custom PP256-based palette (.pal) to fade to. Must be only 1,024 bytes, please!

millisec = the amount of milliseconds determining the speed of fading the selected order of colors from the specified custom
768-byte palette all the way to the specified PP256 custom palette.

Notes on this Command:
This command — once it is used properly — will actually let you fade the color-order range within
your screen from your custom 768-byte palette all the way to your own custom PP256 palette of
your choice, all in *any* speed that you want, all in ONE single pass!!! ^_-=b ! Remember,
higher milliseconds determine slower fades, while lower milliseconds constitute more and more
faster fades.

— 161 —

 CrossFadeRange.PP256_to_768PalCrossFadeRange.PP256_to_768Pal

Sub Description:
 Sub CrossFadeRange.PP256_to_768Pal (StartColor, EndColor, PP256PalFile$,

PalFile$, millisec)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

PP256PalFile$ = the filename for your custom PP256-based palette (.pal) to fade from. Must be only 1,024 bytes, please!

PalFile$ = the filename for your custom 256-color palette (.pal) to fade to. Must be only 768 bytes, please!

millisec = the amount of milliseconds determining the speed of fading the selected order of colors from the specified PP256
custom palette all the way to the specified custom 768-byte palette.

Notes on this Command:
Same exact features as CrossFadeRange.768Pal_to_PP256, *except* that it rather lets you fade
the color-order range within your screen from your own custom PP256 palette right back to your
custom 768-byte palette in its entirety, all in ONE single pass!!! ;*) Once more, higher
milliseconds = slower fades; while lower milliseconds = faster fades.

— 162 —

 CrossFadeCtrl.768Pal_to_PP256CrossFadeCtrl.768Pal_to_PP256

Sub Description:
 Sub CrossFadeCtrl.768Pal_to_PP256 (FadeToPP256Pal.Grade, PalFile$,

PP256PalFile$)

FadeToPP256Pal.Grade = the custom fade-in level between your selectable custom 768-byte palette and your selectable
custom PP256 palette.
(63 = fully faded in to PP256 palette; 0 = fully faded out to 768-byte palette)

PalFile$ = the filename for your custom 256-color palette (.pal) to fade from. Must be only 768 bytes, please!

PP256PalFile$ = the filename for your custom PP256-based palette (.pal) to fade to. Must be only 1,024 bytes, please!

Notes on this Command:
With this command, you have FULL and free reign over all 64 of the fade levels between your
768-byte palette and your own PP256-based custom palette!!! Perfect for games and graphics
demos in FB, as well as for creating some real mind-bending palette effects, too!!! d=^_^=b !!

— 163 —

 CrossFadeRangeCtrl.768Pal_to_PP256CrossFadeRangeCtrl.768Pal_to_PP256

Sub Description:
 Sub CrossFadeRangeCtrl.768Pal_to_PP256 (StartColor, EndColor,

FadeToPP256Pal.Grade, PalFile$, PP256PalFile$)

StartColor = the starting color (0 to 255) within the color-order range.

EndColor = the ending color (0 to 255) within the color-order range.

FadeToPP256Pal.Grade = the custom fade-in level between the selected order of colors from your selectable 768-byte
custom palette and that very same color order from your selectable custom PP256 palette.
(63 = fully faded in to PP256 palette; 0 = fully faded out to 768-byte palette)

PalFile$ = the filename for your custom 256-color palette (.pal) to fade from. Must be only 768 bytes, please!

PP256PalFile$ = the filename for your custom PP256-based palette (.pal) to fade to. Must be only 1,024 bytes, please!

Notes on this Command:
Same great features as CrossFadeCtrl.768Pal_to_PP256, except that you can REALLY fade any
color range you want between your custom 768-byte palette and your own custom PP256
palette!!! Grandly awesome stuff for games and graphics demos in FB, as well as for creating
some real mind-bending palette effects, too!!! d=^_^=b !!

Please turn to the very next page for an FB program example of this using the commands
CrossFade.768Pal_to_PP256, CrossFade.PP256_to_768Pal,
CrossFadeRange.768Pal_to_PP256, CrossFadeRange.PP256_to_768Pal,
CrossFadeCtrl.768Pal_to_PP256, and CrossFadeRangeCtrl.768Pal_to_PP256!!

— 164 —

Program Example # 17 :
(This example uses CrossFade.768Pal_to_PP256, CrossFade.PP256_to_768Pal, CrossFadeRange.768Pal_to_PP256,
CrossFadeRange.PP256_to_768Pal, CrossFadeCtrl.768Pal_to_PP256, and CrossFadeRangeCtrl.768Pal_to_PP256.)
'$include: "FBnewpal.bi"

'Let's set up the good 'ol fullscreen 256-color 320x200 graphics mode
'with no pages. :D
'--
Screen 13, 8, 0, 1

'Then, we add both palettes for this test: our own custom 768-byte
'palette and our own PP256-based palette! And after that, the 256
'color entries will then be drawn for that 768-byte baby. ;*)
'--
Pal.768$ = "CustomPalette_01.pal" '<--- This is our custom 768 palette
 ' that we will be using!

Pal.PP256$ = "PP256Pal1.pal" '<--- This is a PP256-based custom palette
 ' we are *also* are gonna be using here!

LoadUp768Pal Pal.768$ '<--- Revving up our 768-byte custom palette!!

For DrawPalette = 0 to 255
 Line (DrawPalette, 8)-(DrawPalette, 200), DrawPalette
Next

'Now, watch as we rock the 256-color house with some palette crossfades
'between our own 768-byte palette and our custom PP256-based one right
'here!!! ^_- !
'--

Line (0, 0)-(319, 15), 6, BF
Color 15, 6
Locate 1, 1: ? "Now crossfading between our 768-byte"
Locate 2, 1: ? "palette and our custom PP256 palette!!"
sleep 3000

'--- First off, let's fade our custom 768-byte palette all the way into
' that custom PP256 palette in one pass, using only 52 milliseconds per
' fade-step! And then, we wait two seconds before we fade the palette
' back to normal again at the same exact speed. Then we wait two more
' seconds. ;*)

CrossFade.768Pal_to_PP256 Pal.768$, Pal.PP256$, 52
sleep 2000
CrossFade.PP256_to_768Pal Pal.PP256$, Pal.768$, 52
sleep 2000

'--- Now let's do it all again, but this time, using color entries 78-164
' and just 37 milliseconds per fade-step!

CrossFadeRange.768Pal_to_PP256 78, 164, Pal.768$, Pal.PP256$, 37
sleep 2000
CrossFadeRange.PP256_to_768Pal 78, 164, Pal.PP256$, Pal.768$, 37
sleep 2000

Continues on next page.......

— 165 —

“Program Example #17” continued from last page........
'--- Here comes the AWESOME part: we crossfade the same palettes to and
' fro *while* we draw the circles, lines, and boxes on the screen,
' using the command "CrossFadeCtrl.768Pal_to_PP256"!!! :D !

Line (0, 0)-(319, 15), 6, BF
Color 15, 6
Locate 1, 1: ? "Now let's draw some stuff while we"
Locate 2, 1: ? "crossfade between the same palettes!!"
For Fade = 0 to 63
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
 CrossFadeCtrl.768Pal_to_PP256 Fade, Pal.768$, Pal.PP256$
Next
For ExtraLines = 0 to 80
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
Next
For Fade = 0 to 63
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
 CrossFadeCtrl.768Pal_to_PP256 63 - Fade, Pal.768$, Pal.PP256$
Next
For ExtraLines = 0 to 80
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1, B
Next

'--- Let us do that again, but this time, using the command
' "CrossFadeRangeCtrl.768Pal_to_PP256" to fade color entries 80-234
' between our own 768-byte palette and our PP256-based palette!!!
' ^_-=b !

For Fade = 0 to 63
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
 CrossFadeRangeCtrl.768Pal_to_PP256 80, 234, Fade, Pal.768$, Pal.PP256$
Next
For ExtraLines = 0 to 80
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1
Next
For Fade = 0 to 63
 sleep 35
 Circle (Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 66), Int (rnd(1) * 50) + 1, Int (rnd(1) * 255) + 1
 CrossFadeRangeCtrl.768Pal_to_PP256 80, 234, 63 - Fade, Pal.768$, Pal.PP256$
Next
For ExtraLines = 0 to 80
 sleep 35
 Line -(Int(rnd (1) * 319) + 1, Int (rnd(1) * 183) + 16), Int (rnd(1) * 255) + 1, BF
Next
Line (0, 0)-(319, 15), 0, BF
Color 15, 0
Locate 1, 1: ? "Check 'ya out later, and have such an"
Locate 2, 1: ? "*excellent* day now! Peace!!!"

'--- Finally, time to conclude by fading the ENTIRE custom 768-byte
' palette slowly but *all the way* out in only one pass, using just
' 63 milliseconds per fade-step! ;*)

FadeOut.768Pal Pal.768$, 63

'--- And we outta here!!! ^_- !

— 166 —

—————— CCOLOROLOR A ADDJUJUSTST R ROUTINEOUTINE
Or, a little lesson in spicing up your palette with just a wee bit here and a pinch there!

 WriteColorWriteColor

Sub Description:
 Sub WriteColor (Col, R, G, B)

Col = the color number (0 to 255) to change into any RGB color combination (within the “R”, “G”, and “B” variables).

R = the red shade level (0 to 63).

G = the green shade level (0 to 63).

B = the blue shade level (0 to 63).

Notes on this Command:
When this command is called, it will change any color number you want to *any* RGB color
combination you want, easily and INSTANTANEOUSLY! Useful for graphics demos and even your
games, too!!

Example Usages of this Command:
WriteColor 6, 0, 0, 63
Changes the RGB values of color #6 to make it blue.

WriteColor 172, 63, 32, 0
Changes the RGB values of color #172 to make it orange.

WriteColor 15, 63, 0, 63
Changes the RGB values of color #15 to make it purple.

— 167 —

—————— AAPPENDIXPPENDIX A: 768- A: 768-BYTEBYTE P PALETTESALETTES
Or, let’s dissect in some awesome truths about how this type of palette first took shape!

Originally, from way back in the ‘ye good olde Microsoft DOS (or MS-DOS) days,
some of you may remember something about a type of palette file that was portable
yet *extremely* so powerful, in that 1) it enabled a growing and vast amount of
programmers everywhere to just break on outta the all-too-familiar default 256-color
palette to create custom 256-color ones that are both truly imaginative and even
breathtakingly original; and 2) it was no more than only 768 bytes in size!!! :o !
Imagine that, huh? This type of file is simply called a .PAL file.

For a 768-byte palette file (.PAL), it begins with a little something like this:

1-bit color 2-bit color 3-bit color 4-bit color 5-bit color 6-bit color 7-bit color 8-bit color
Math order: 2 ^ 1 2 ^ 2 2 ^ 3 2 ^ 4 2 ^ 5 2 ^ 6 2 ^ 7 2 ^ 8
Total colors: 2 4 8 16 32 64 128 256

........whereas for example, if you were to do this mathematical problem of.....
 2 ^ 3 = 8

........then that would be the *exact* same as.....
 2 * 2 * 2 = 8 (2 * 2 = 4; and then 4 * 2 = 8)

So then, if you can multiply just eight 2’s in a row, then that would actually give you a
grand total of 256 displayable colors!!! ;*) !

For the 256 displayable colors indeed, let’s think this through, shall we?

— 168 —

Each single color here consists ENTIRELY of only three (3) channels:

Red (R), Green (G), and Blue (B)

........with just *one* (1) single byte per channel. The three color channels, then,
count simply as only 3 bytes to store per color. So, if we just add it like this for all
256 colors:

Red (R) channel 256 bytes
Green (G) channel 256 bytes
Blue (B) channel 256 bytes

 256 + 256 = 512
then 512 + 256 = 768 bytes total!!

........BOOM!! There is your custom 768-byte palette file, because that is what it’s no
less than really all about!!! Not too complicated now, was it? ^_-=b !

— 169 —

—————— AAPPENDIXPPENDIX B: C B: CONSTANTSONSTANTS
Or, here are some litte yet *very* important things for you to remember in this lib!

Here are the constants that you will be using as little shortcuts to help make things a
little easier in your FreeBASIC coding during the use of this first-ever FB palette library:

CONST FBPM.True = 1, FBPM.False = 0
CONST Yes = 1, No = 0
In other words, do feel absolutely free to use those four substitutes to speed you right
along a little bit to avoid confusion. Eventually, they will help make it more practical
enough to do whatever you want it to in this palette machine!!! ^_^ !

— 170 —

—————— AAPPENDIXPPENDIX C: P C: PROGRAMROGRAM E EXAMPLEXAMPLE I INDEXNDEX
Or, a little refresher course on what we’ve learned today!

Program Example #:Program Example #: Purpose of the Example:Purpose of the Example: Page:Page:

- 1 - Shows you how to fade in and out the selectable colors from the GFXlib 2 default palette. 18

- 2 - Shows you how to rotate colors around and around the GFXlib 2 default palette. 25

- 3 - Shows you the MANY cool tricks that you can achieve and more with a negative of the GFXlib 2 default palette! 33

- 4 - Shows you the amazingly awesome greyscale techniques and loads more within them for the GFXlib 2 default palette! 44

- 5 - Shows you how to load a custom 768-byte palette, and then to fade in and out the selectable colors from it! 58

- 6 - Shows you how to rotate the colors around and around your own custom 768-byte palette! 65

- 7 - Shows you the MANY cool tricks that you can achieve and more with a negative of a custom 768-byte palette! 74

- 8 - Shows you the amazingly awesome greyscale techniques and loads more within them for your custom 768-byte palette! 85

- 9 - Shows you how to load a custom PixelPlus 256 (PP256) palette, and then to fade in and out the selectable colors from it! 99

- 10 - Shows you how to rotate colors around and around your own PP256-based palette. 106

- 11 - Shows you the MANY cool tricks that you can achieve and more with a negative of a PP256-based palette! 115

- 12 - Shows you the amazingly awesome greyscale techniques and loads more within them for your own PP256-based palette! 126

- 13 - Shows you how to do spectactularly good crossfades between the GFXlib 2 default palette and your 768-byte palette! 137

- 14 - Shows you how to do spectactularly good crossfades between TWO custom 768-byte palettes! 143

- 15 - Shows you how to do spectactularly good crossfades between TWO custom PP256-based palettes!! 149

- 16 - Shows you how to do spectactularly good crossfades between the GFXlib 2 default palette and your PP256-based palette!! 157

- 17 - Shows you how to do spectactularly good crossfades between your own 768-byte palette and your PP256-based palette!! 165

— 171 —

—————— CCHANGELOGHANGELOG
Or, I will show you a little history on what happened since the very first coming of this FB lib!

version version 1.11.1 —— sunday, march 13, 2005 sunday, march 13, 2005
Updated and improved the speed on my custom-emulated version of the
default 256-color GFXlib 2 palette, thereby causing the supporting
fading/rotation/negative/crossfade/greyscale routines for that palette to have
at least a bit of a noticable speed increase (thank you, VonGodric!! ^_-=b)!!

version version 1.01.0 —— saturday, march 12, 2005 saturday, march 12, 2005
Initial Release, FIRST presented on QBasicNews.com forums on that very
morning EST!! ^-^ !

— 172 —

—————— FFINALINAL W WORDSORDS
Or, let me kindly say some last (but NOT least!) things to you in close!

Whew!! Now THAT was one *long* documentation to say the least!! But also, I hope
you enjoyed your wonderful read of this as much as I did creating it. Remember, I did
not write this documentation for myself. No. Rather, I wrote it clearly TO BE A
RATHER VERY BLESSING TO YOU AND THE ENTIRE QB45/QB71/FREEBASIC
COMMUNITY, period, total end. ;*) !! Not only that, but that is the whole entire
purpose of this wonderful first-ever palette library for FB that will guarantee that you
will have an intense blast using, I promise you that. I CAN PROMISE IT, with all of my
very heart. d=^_-=b !

Also, one final thing: for NEWER versions of FreeBASIC, please follow the same exact
install instructions as clearly described on Page 7. That way, you can be sure that the
functionality on this whole library will *fully* work in its entirety on that newer version
indeed. Be sure to remember that!! :D

Let’s give some credit to where it is due, shall we now?

First of all, EXTRA Special Thanks *definitely* go out to Almighty Jehovah God, who
has no doubt enabled me and empowered me and encouraged me to do both this
whole original FB library and all of the above as fully told in this whole
documentation, beginning to end!!! Praise and maximum glory be to Him forever!!!
d=^_-=b !!

— 173 —

Also, Special Thanks to the following wonderful people for getting me so inspired to
create “The New FreeBASIC 8-Bit Palette Machine”:

 Andre Victor T. Vicentini (aka v1ctor)Andre Victor T. Vicentini (aka v1ctor)
 Angelo Mottola (for the Angelo Mottola (for the MOST AWESOME LIBMOST AWESOME LIB GFXlib 2GFXlib 2 for FB!!! for FB!!! d=^_^=b !!d=^_^=b !!))
 Richard Eric M. Lope (aka Relsoft)Richard Eric M. Lope (aka Relsoft)
 VonGodric (for helping me to improve the speed on my routines supporting the default VonGodric (for helping me to improve the speed on my routines supporting the default GFXlib 2GFXlib 2 palette!!) palette!!)
 Sterling ChristensenSterling Christensen
 Chris ChadwickChris Chadwick
 Steve Nunnally of Acid Works SoftwareSteve Nunnally of Acid Works Software
 P. Bindels (for his *awesome* inspirations for me to just code my own routines for this lib!! P. Bindels (for his *awesome* inspirations for me to just code my own routines for this lib!! ;*);*)))

And finally, such SPLENDIDLY AWESOME greets to the following great people (and
fellow FB users, too!!!):

 Wildcard (aka Brendan Urquhart)Wildcard (aka Brendan Urquhart)
 Fling-master (aka Gered King)Fling-master (aka Gered King)
 DavDav
 OracleOracle
 Pete BergPete Berg
 Dark_prevailDark_prevail
 Nekrophidius (aka Necros Ihsan Nodtveidt)Nekrophidius (aka Necros Ihsan Nodtveidt)
 TheBigBasicQTheBigBasicQ
 NemesisNemesis
 Na Than Assh Antti (aka Na_th_an)Na Than Assh Antti (aka Na_th_an)
 Neo Deus Ex MachinaNeo Deus Ex Machina
 AetherfoxAetherfox
 Dr_DavensteinDr_Davenstein
 and toand to ALL OTHER MEMBERSALL OTHER MEMBERS of the QBasicNews.com forums!!! of the QBasicNews.com forums!!! ^_^=b^_^=b

— 174 —

I most sincerely hope with all of my heart that you so richly enjoy this library as the
truly definitive 8-bit palette manipulation tool for FreeBASIC, as I am *sure* you likely
will once you experience it for your precious self. I guarantee it!! ;D !

God so utterly bless all of you, and a most grandly pleasant “Bon Voyage”!!! ^-^ !!

From the words of Adigun Azikiwe Polack, the official creator of “From the words of Adigun Azikiwe Polack, the official creator of “The New FreeBASIC 8-Bit Palette MachineThe New FreeBASIC 8-Bit Palette Machine””..

— 175 —

Presented to you by Adigun Azikiwe Polack.
© 2005 Adigun Azikiwe Polack. All Rights Reserved.

